Esempio n. 1
0
  def test_conv_pnt_local_2_global(self):

    local_fr = Pose2D(1, 1, 45.0/180.0 * math.pi)
    loc_pnt = Coord2D(x=math.sqrt(2), y=-math.sqrt(2))
    glo_pnt = conv_pnt_local_2_global(local_fr, loc_pnt)
    self.assertAlmostEqual(glo_pnt.x, 3.0, places=5)
    self.assertAlmostEqual(glo_pnt.y, 1.0, places=5)
Esempio n. 2
0
    def __init__(self,
                 *,
                 particle_num=10,
                 init_pose=Pose2D(),
                 sampler=LowVarianceSampler(),
                 err_model,
                 likelihood_generator,
                 grid_map_conf,
                 inv_sens_model):

        self._particle_num = particle_num
        self._init_pose = init_pose
        self._sampler = sampler
        self._err_model = err_model
        self._likelihood_generator = likelihood_generator
        self._inv_sens_model = inv_sens_model

        # Particle Vector Generation
        map_elem = OccupancyGridMap2D(conf=grid_map_conf)
        particle = ParticleSLAM(pose=self._init_pose,
                                weight=float(1 / self._particle_num),
                                map=map_elem)

        self._particles = [
            copy.deepcopy(particle) for i in range(self._particle_num)
        ]
Esempio n. 3
0
  def test_conv_pnt_global_2_local1(self):

    local_fr = Pose2D(1, 1, 45.0/180.0 * math.pi)
    glo_pnt = Coord2D(x=3.0, y=1.0)
    loc_pnt = conv_pnt_global_2_local(local_fr, glo_pnt)
    self.assertAlmostEqual(loc_pnt.x, math.sqrt(2), places=5)
    self.assertAlmostEqual(loc_pnt.y, -math.sqrt(2), places=5)
Esempio n. 4
0
    def __convert_numpy_list_2_list_poses(self, np_list_poses):

        list_poses = [Pose2D() for i in range(np_list_poses.shape[1])]
        for i in range(np_list_poses.shape[1]):
            list_poses[i].x = np_list_poses[0, i]
            list_poses[i].y = np_list_poses[1, i]
            list_poses[i].theta = np_list_poses[2, i]
        return list_poses
Esempio n. 5
0
    def __init__(self, *, config, landmarks, ini_pose=Pose2D()):

        self._conf = config
        self._landmarks = landmarks
        self._last_avg = ini_pose
        self._mm_pose = ini_pose
        self._last_sigma = np.matrix(np.zeros((3, 3)))
        self._Q = np.matrix(np.eye(3))
        self._Q[0, 0] = self._conf.err_r**2
        self._Q[1, 1] = self._conf.err_phi**2
        self._Q[2, 2] = self._conf.err_feat**2
Esempio n. 6
0
    def _calc_jacobi_H(self, pose_mat, lm_glob):

        pose = Pose2D(x=pose_mat[0, 0], y=pose_mat[1, 0], theta=pose_mat[2, 0])
        r = (lm_glob.x - pose.x)**2 + (lm_glob.y - pose.y)**2

        H = np.matrix(np.zeros((3, 3)))
        H[0, 0] = -(lm_glob.x - pose.x) / math.sqrt(r)
        H[1, 0] = (lm_glob.y - pose.y) / r
        H[0, 1] = -(lm_glob.y - pose.y) / math.sqrt(r)
        H[1, 1] = -(lm_glob.x - pose.x) / r
        H[1, 2] = -1

        return H
Esempio n. 7
0
    def _predict(self, control, last_pose):

        v = control.v
        omg = control.omg
        theta = last_pose.theta
        dT = self._conf.dT

        pred_pose = Pose2D()
        pred_pose.x = last_pose.x + v * dT * math.cos(theta - omg * dT / 2.0)
        pred_pose.y = last_pose.y + v * dT * math.sin(theta - omg * dT / 2.0)
        pred_pose.theta = normalize_angle_pi_2_pi(theta + omg * dT)

        G = self._calc_jacobi_G(control, last_pose)
        V, M = self.__calc_control_transmat_V_M(control, last_pose)

        pred_sigma = G * self._last_sigma * G.T + V * M * V.T

        return pred_pose, pred_sigma
Esempio n. 8
0
    def _correct(self, pred_pose, pred_sigma, ekf_kc_meas):

        pose_mat = np.matrix(pred_pose.numpy_array()).T
        sigma = copy.deepcopy(pred_sigma)
        pred_meas_list = []
        S_list = []
        z_diff_list = []
        for index, meas in enumerate(ekf_kc_meas._measurements):
            # Measurement Update for each landmark.
            lm_idx = ekf_kc_meas._corresp[index]
            lm_glob = self._landmarks[lm_idx]
            calc_meas = self._calc_measurement(pose_mat, lm_glob)
            pred_meas_list.append(calc_meas)
            H = self._calc_jacobi_H(pose_mat, lm_glob)
            S = H * sigma * H.T + self._Q
            S_list.append(copy.deepcopy(S))
            K = sigma * H.T * np.linalg.inv(S)
            z_diff_mat = np.matrix(meas.numpy_array() -
                                   calc_meas.numpy_array()).T
            z_diff_mat[1, 0] = normalize_angle_pi_2_pi(z_diff_mat[1, 0])

            if (abs(z_diff_mat[0, 0]) > 5 or abs(z_diff_mat[1, 0]) > 0.5):
                sys.exit()

            z_diff_list.append(copy.deepcopy(z_diff_mat))
            pose_mat = pose_mat + K * (z_diff_mat)
            sigma = (np.matrix(np.eye(3)) - K * H) * sigma

        likelihood = 1.0
        for index, meas in enumerate(ekf_kc_meas._measurements):
            S_inv = np.linalg.inv(S_list[index])
            z_diff = z_diff_list[index]
            likelihood = likelihood \
                * 1 / math.sqrt(2 * math.pi) \
                * math.exp(-1/2*(z_diff).T * S_inv * (z_diff))

        normalized_theta = normalize_angle_pi_2_pi(pose_mat[2, 0])
        updated_pose = Pose2D(x=pose_mat[0, 0],
                              y=pose_mat[1, 0],
                              theta=normalized_theta)
        return updated_pose, sigma, likelihood
Esempio n. 9
0
def create_robocup_ellipse_path(dT):

    a = 1.5
    b = 0.9
    omg = 2 * math.pi / 60.0
    start = -3.0 / 4.0 * math.pi
    end = 3.0 / 4.0 * math.pi

    path = []
    controls = []
    for angle in np.arange(start, end, omg * dT):
        x = a * math.cos(angle)
        y = b * math.sin(angle)
        dx_dt = -a * math.sin(angle) * omg
        dy_dt = b * math.cos(angle) * omg
        v = math.sqrt(dx_dt**2 + dy_dt**2)

        theta = normalize_angle_pi_2_pi(math.atan2(dy_dt, dx_dt))
        path.append(Pose2D(x=x, y=y, theta=theta))
        controls.append(Control(v=v, omg=omg))

    return path, controls
Esempio n. 10
0
 def _calc_measurement(self, pose_mat, lm_glob):
     pose = Pose2D(x=pose_mat[0, 0], y=pose_mat[1, 0], theta=pose_mat[2, 0])
     lm_loc = conv_pnt_global_2_local(pose, lm_glob)
     r = math.sqrt(lm_loc.x**2 + lm_loc.y**2)
     phi = normalize_angle_pi_2_pi(math.atan2(lm_loc.y, lm_loc.x))
     return LandmarkMeas(r=r, phi=phi)
Esempio n. 11
0
 def __init__(self, *, pose=Pose2D(), weight=1.0, map):
     self._pose_list = [pose]
     self._weight = weight
     self._map = map
  grid2d_odom_disp = GridMap2D(gridmap_config=grid_conf)
  grid2d_pose = GridMap2D(gridmap_config=grid_conf)

  # Create Testing Configuration.
  create_sample_room(grid2d_gt)
  create_sample_room(grid2d_odom_disp)
  create_sample_room(grid2d_pose)
  path = create_sample_robot_path(grid2d_odom_disp)

  # Visualization Preparation
  fig, ax_main = plt.subplots(nrows=1,ncols=1,figsize=(13, 9),dpi=100)
  fig, (ax00, ax10) = plt.subplots(nrows=2,ncols=1,figsize=(4, 6),dpi=100)
  grid2d_gt.show_heatmap(ax00)
  grid2d_odom_disp.show_heatmap(ax10)

  cur_particle_poses = [Pose2D() for i in range(particle_num)]
  last_particle_poses = [Pose2D() for i in range(particle_num)]

  last_pose = Pose2D()
  for index, cur_pose in enumerate(path):  
    print("Loop {0}".format(str(index)))

    if index == 0:
      last_pose = cur_pose
      for i in range(particle_num):
        cur_particle_poses[i] = cur_pose
      continue

    # Sample Artificial Odometry Error 
    cur_particle_poses = \
          err_model.sample_motion(cur_odom=cur_pose, \
import math

# Common Module
from common.container import Pose2D

# Motion Model
from motion_model.motion_model import MotionErrorModel2dConfigParams
from motion_model.motion_model import MotionErrorModel2D

if __name__ == "__main__":

    import matplotlib.pyplot as plt

    print("Sample Motion")

    path = [Pose2D(0.0, 0.0, 0.0), Pose2D(0.0, 0.0, 0.0), Pose2D(1.0, 0.0, 0.0), \
            Pose2D(2.0, 0.0, 0.0), Pose2D(3.0, 0.0, 0.0), Pose2D(4.0, 0.0, 0.0), \
            Pose2D(5.0, 0.0, 0.0), Pose2D(5.0, 0.0, math.pi/2.0), \
            Pose2D(5.0, 1.0, math.pi/2.0), Pose2D(5.0, 2.0, math.pi/2.0), \
            Pose2D(5.0, 2.0, math.pi/1.0), Pose2D(4.0, 2.0, math.pi/1.0), \
            Pose2D(3.0, 2.0, math.pi/1.0), Pose2D(2.0, 2.0, math.pi/1.0), \
            Pose2D(1.0, 2.0, math.pi/1.0), Pose2D(0.0, 2.0, math.pi/1.0)]

    # Error Model
    err_conf = MotionErrorModel2dConfigParams(std_rot_per_rot=0.01,
                                              std_rot_per_trans=0.02,
                                              std_trans_per_trans=0.05,
                                              std_trans_per_rot=0.01)
    err_model = MotionErrorModel2D(conf=err_conf)

    particle_num = 5
Esempio n. 14
0
        if (map2d_src.is_valid_global_coord(10.0, y_coor)):
            map2d_src.update_val_via_global_coord(x=10.0, y=y_coor, value=1.0)

    range_max = 10.0
    # Inverse Sensor Model
    inv_lidar_conf = InverseRangeSensorModelConfigParams(\
                          range_max=range_max,
                          l0 = 0.5, locc = 1.0, lfree = 0.0, \
                          alpha = 0.4, beta = 0.0)
    inv_lidar_model = InverseRangeSensorModel(conf=inv_lidar_conf)

    # Lidar Property
    lidar_config = VirtualLidar2DConfigParams(range_max=range_max, \
                                     min_angle=-math.pi/2.0, \
                                     max_angle=math.pi/2.0, \
                                     angle_res=math.pi/360.0, \
                                     sigma=2.0)
    v_lidar = VirtualLidar2D(lidar_config=lidar_config)

    pose = Pose2D(x=5.0, y=0.0, theta=45.0 / 180.0 * math.pi)
    scans = v_lidar.generate_scans(pose, map2d_src)

    fig, ax = plt.subplots(1, 1)

    #v_lidar.register_fixed_scan(pose=pose, scans=scans, map2d=map2d_dst)
    #map2d_dst.register_scan(pose=pose, scans=scans)
    inv_lidar_model.register_fixed_scan(pose=pose,
                                        scans=scans,
                                        map2d=map2d_dst)
    map2d_dst.show_heatmap(ax)
    plt.show()
Esempio n. 15
0
def create_sample_robot_path(map2d, trans_reso=1.0, angle_reso=math.pi / 2.0):

    path = []

    for i in range(34 * 4):
        path.append(Pose2D(-49 + i * 0.25, -17.5, 0))

    path.append(Pose2D(-15, -17.5, math.pi / 2.0 * 0.1))
    path.append(Pose2D(-15, -17.5, math.pi / 2.0 * 0.2))
    path.append(Pose2D(-15, -17.5, math.pi / 2.0 * 0.3))
    path.append(Pose2D(-15, -17.5, math.pi / 2.0 * 0.4))
    path.append(Pose2D(-15, -17.5, math.pi / 2.0 * 0.5))
    path.append(Pose2D(-15, -17.5, math.pi / 2.0 * 0.6))
    path.append(Pose2D(-15, -17.5, math.pi / 2.0 * 0.7))
    path.append(Pose2D(-15, -17.5, math.pi / 2.0 * 0.8))
    path.append(Pose2D(-15, -17.5, math.pi / 2.0 * 0.9))
    path.append(Pose2D(-15, -17.5, math.pi / 2.0))

    for i in range(35 * 4):
        path.append(Pose2D(-15, -17.5 + i * 0.25, math.pi / 2.0))

    path.append(Pose2D(-15, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.1))
    path.append(Pose2D(-15, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.2))
    path.append(Pose2D(-15, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.3))
    path.append(Pose2D(-15, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.4))
    path.append(Pose2D(-15, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.5))
    path.append(Pose2D(-15, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.6))
    path.append(Pose2D(-15, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.7))
    path.append(Pose2D(-15, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.8))
    path.append(Pose2D(-15, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.9))
    path.append(Pose2D(-15, 17.5, math.pi / 2.0 + math.pi / 2.0 * 1.0))

    for i in range(22 * 4):
        path.append(Pose2D(-15 - i * 0.25, 17.5, math.pi))

    path.append(Pose2D(-37, 17.5, math.pi + math.pi / 2.0 * 0.1))
    path.append(Pose2D(-37, 17.5, math.pi + math.pi / 2.0 * 0.2))
    path.append(Pose2D(-37, 17.5, math.pi + math.pi / 2.0 * 0.3))
    path.append(Pose2D(-37, 17.5, math.pi + math.pi / 2.0 * 0.4))
    path.append(Pose2D(-37, 17.5, math.pi + math.pi / 2.0 * 0.5))
    path.append(Pose2D(-37, 17.5, math.pi + math.pi / 2.0 * 0.6))
    path.append(Pose2D(-37, 17.5, math.pi + math.pi / 2.0 * 0.7))
    path.append(Pose2D(-37, 17.5, math.pi + math.pi / 2.0 * 0.8))
    path.append(Pose2D(-37, 17.5, math.pi + math.pi / 2.0 * 0.9))
    path.append(Pose2D(-37, 17.5, math.pi + math.pi / 2.0 * 1.0))

    for i in range(35 * 4):
        path.append(Pose2D(-37, 17.5 - i * 0.25, math.pi * 3.0 / 2.0))

    path.append(Pose2D(-37, -17.5, math.pi * 3 / 2.0 + math.pi / 2.0 * 0.1))
    path.append(Pose2D(-37, -17.5, math.pi * 3 / 2.0 + math.pi / 2.0 * 0.2))
    path.append(Pose2D(-37, -17.5, math.pi * 3 / 2.0 + math.pi / 2.0 * 0.3))
    path.append(Pose2D(-37, -17.5, math.pi * 3 / 2.0 + math.pi / 2.0 * 0.4))
    path.append(Pose2D(-37, -17.5, math.pi * 3 / 2.0 + math.pi / 2.0 * 0.5))
    path.append(Pose2D(-37, -17.5, math.pi * 3 / 2.0 + math.pi / 2.0 * 0.6))
    path.append(Pose2D(-37, -17.5, math.pi * 3 / 2.0 + math.pi / 2.0 * 0.7))
    path.append(Pose2D(-37, -17.5, math.pi * 3 / 2.0 + math.pi / 2.0 * 0.8))
    path.append(Pose2D(-37, -17.5, math.pi * 3 / 2.0 + math.pi / 2.0 * 0.9))
    path.append(Pose2D(-37, -17.5, math.pi * 3 / 2.0 + math.pi / 2.0 * 1.0))

    for i in range(61 * 4):
        path.append(Pose2D(-37 + i * 0.25, -17.5, 0))

    path.append(Pose2D(24, -17.5, math.pi / 2.0 * 0.1))
    path.append(Pose2D(24, -17.5, math.pi / 2.0 * 0.2))
    path.append(Pose2D(24, -17.5, math.pi / 2.0 * 0.3))
    path.append(Pose2D(24, -17.5, math.pi / 2.0 * 0.4))
    path.append(Pose2D(24, -17.5, math.pi / 2.0 * 0.5))
    path.append(Pose2D(24, -17.5, math.pi / 2.0 * 0.6))
    path.append(Pose2D(24, -17.5, math.pi / 2.0 * 0.7))
    path.append(Pose2D(24, -17.5, math.pi / 2.0 * 0.8))
    path.append(Pose2D(24, -17.5, math.pi / 2.0 * 0.9))
    path.append(Pose2D(24, -17.5, math.pi / 2.0 * 1.0))

    for i in range(35 * 4):
        path.append(Pose2D(24, -17.5 + i * 0.25, math.pi / 2.0))

    path.append(Pose2D(24, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.1))
    path.append(Pose2D(24, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.2))
    path.append(Pose2D(24, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.3))
    path.append(Pose2D(24, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.4))
    path.append(Pose2D(24, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.5))
    path.append(Pose2D(24, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.6))
    path.append(Pose2D(24, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.7))
    path.append(Pose2D(24, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.8))
    path.append(Pose2D(24, 17.5, math.pi / 2.0 + math.pi / 2.0 * 0.9))
    path.append(Pose2D(24, 17.5, math.pi / 2.0 + math.pi / 2.0 * 1.0))

    for i in range(20 * 4):
        path.append(Pose2D(24 - i * 0.25, 17.5, math.pi))

    path.append(Pose2D(4, 17.5, math.pi + math.pi / 2.0 * 0.1))
    path.append(Pose2D(4, 17.5, math.pi + math.pi / 2.0 * 0.2))
    path.append(Pose2D(4, 17.5, math.pi + math.pi / 2.0 * 0.3))
    path.append(Pose2D(4, 17.5, math.pi + math.pi / 2.0 * 0.4))
    path.append(Pose2D(4, 17.5, math.pi + math.pi / 2.0 * 0.5))
    path.append(Pose2D(4, 17.5, math.pi + math.pi / 2.0 * 0.6))
    path.append(Pose2D(4, 17.5, math.pi + math.pi / 2.0 * 0.7))
    path.append(Pose2D(4, 17.5, math.pi + math.pi / 2.0 * 0.8))
    path.append(Pose2D(4, 17.5, math.pi + math.pi / 2.0 * 0.9))
    path.append(Pose2D(4, 17.5, math.pi + math.pi / 2.0 * 1.0))

    for i in range(32 * 4):
        path.append(Pose2D(4, 17.5 - i * 0.25, math.pi * 3.0 / 2.0))

    path.append(Pose2D(4, -14.5, math.pi * 3.0 / 2.0 + math.pi / 2.0 * 0.1))
    path.append(Pose2D(4, -14.5, math.pi * 3.0 / 2.0 + math.pi / 2.0 * 0.2))
    path.append(Pose2D(4, -14.5, math.pi * 3.0 / 2.0 + math.pi / 2.0 * 0.3))
    path.append(Pose2D(4, -14.5, math.pi * 3.0 / 2.0 + math.pi / 2.0 * 0.4))
    path.append(Pose2D(4, -14.5, math.pi * 3.0 / 2.0 + math.pi / 2.0 * 0.5))
    path.append(Pose2D(4, -14.5, math.pi * 3.0 / 2.0 + math.pi / 2.0 * 0.6))
    path.append(Pose2D(4, -14.5, math.pi * 3.0 / 2.0 + math.pi / 2.0 * 0.7))
    path.append(Pose2D(4, -14.5, math.pi * 3.0 / 2.0 + math.pi / 2.0 * 0.8))
    path.append(Pose2D(4, -14.5, math.pi * 3.0 / 2.0 + math.pi / 2.0 * 0.9))
    path.append(Pose2D(4, -14.5, math.pi * 3.0 / 2.0 + math.pi / 2.0 * 1.0))

    for i in range(18 * 4):
        path.append(Pose2D(4 + i * 0.25, -14.5, 0))

    path.append(Pose2D(22, -14.5, math.pi / 2.0 * 0.1))
    path.append(Pose2D(22, -14.5, math.pi / 2.0 * 0.2))
    path.append(Pose2D(22, -14.5, math.pi / 2.0 * 0.3))
    path.append(Pose2D(22, -14.5, math.pi / 2.0 * 0.4))
    path.append(Pose2D(22, -14.5, math.pi / 2.0 * 0.5))
    path.append(Pose2D(22, -14.5, math.pi / 2.0 * 0.6))
    path.append(Pose2D(22, -14.5, math.pi / 2.0 * 0.7))
    path.append(Pose2D(22, -14.5, math.pi / 2.0 * 0.8))
    path.append(Pose2D(22, -14.5, math.pi / 2.0 * 0.9))
    path.append(Pose2D(22, -14.5, math.pi / 2.0 * 1.0))

    for i in range(30 * 4):
        path.append(Pose2D(22, -14.5 + i * 0.25, math.pi / 2.0))

    path.append(Pose2D(22, 15.5, math.pi / 2.0 * 0.9))
    path.append(Pose2D(22, 15.5, math.pi / 2.0 * 0.8))
    path.append(Pose2D(22, 15.5, math.pi / 2.0 * 0.7))
    path.append(Pose2D(22, 15.5, math.pi / 2.0 * 0.8))
    path.append(Pose2D(22, 15.5, math.pi / 2.0 * 0.5))
    path.append(Pose2D(22, 15.5, math.pi / 2.0 * 0.4))
    path.append(Pose2D(22, 15.5, math.pi / 2.0 * 0.3))
    path.append(Pose2D(22, 15.5, math.pi / 2.0 * 0.2))
    path.append(Pose2D(22, 15.5, math.pi / 2.0 * 0.1))
    path.append(Pose2D(22, 15.5, math.pi / 2.0 * 0.0))

    for i in range(27 * 4):
        path.append(Pose2D(22 + i * 0.25, 15.5, 0))

    for pose in path:
        GridMap2DDrawer.draw_point(map2d, pose.x, pose.y, 0.25, 1.0)

    return path
Esempio n. 16
0
    map2d_src = GridMap2D(gridmap_config=grid_conf)

    for i in range(int(50 / 0.2)):
        y_coor = i * grid_conf.reso - 25.0
        if (map2d_src.is_valid_global_coord(10.0, y_coor)):
            map2d_src.update_val_via_global_coord(x=10.0, y=y_coor, value=1.0)

    # Lidar Property
    lidar_config = VirtualLidar2DConfigParams(range_max=10.0, \
                                     min_angle=-math.pi/2.0, \
                                     max_angle=math.pi/2.0, \
                                     angle_res=math.pi/360.0, \
                                     sigma=2.0)
    fakeScanGen = VirtualLidar2D(lidar_config=lidar_config)

    true_pose = Pose2D(x=5.0, y=0.0, theta=45.0 / 180.0 * math.pi)
    diff_pose = Pose2D(x=4.3, y=0.0, theta=42.0 / 180.0 * math.pi)

    scans = fakeScanGen.generate_scans(true_pose, map2d_src)

    scan_match_cfg = ScanMatcherConfigParams(
                            zhit=0.8, \
                            zshort=0.0,
                            zmax=0.1,
                            zmax_width=0.2,
                            zrand=0.1,
                            lambda_short=0.0)
    likelihoodGen = ScanMatcher(lidar_config=lidar_config,
                                scan_match_config=scan_match_cfg)

    prob = likelihoodGen.calc_likelihood(pose=diff_pose,