Esempio n. 1
0
    def __init__(self, input_dim=(1, 28, 28), conv_param={'filter_num': 30, 'filter_size': 5, 'pad': 0, 'stride': 1},
                 hidden_size=100, output_size=10, weight_init_std=0.01):
        filter_num = conv_param ['filter_num']
        filter_size = conv_param ['filter_size']
        filter_pad = conv_param ['pad']
        filter_stride = conv_param ['stride']
        input_size = input_dim [1]
        conv_output_size = (input_size - filter_size + 2 * filter_pad) / filter_stride + 1
        pool_output_size = int (filter_num * (conv_output_size / 2) * (conv_output_size / 2))

        # 重みの初期化
        self.params = {}
        self.params ['W1'] = weight_init_std * np.random.randn (filter_num, input_dim [0], filter_size, filter_size)
        self.params ['b1'] = np.zeros (filter_num)
        self.params ['W2'] = weight_init_std * np.random.randn (pool_output_size, hidden_size)
        self.params ['b2'] = np.zeros (hidden_size)
        self.params ['W3'] = weight_init_std * np.random.randn (hidden_size, output_size)
        self.params ['b3'] = np.zeros (output_size)

        # レイヤの生成
        self.layers = OrderedDict ()
        self.layers ['Conv1'] = layers.Convolution (self.params ['W1'], self.params ['b1'], conv_param ['stride'],
                                                    conv_param ['pad'])
        self.layers ['Relu1'] = layers.Relu ()
        self.layers ['Pool1'] = layers.Pooling (pool_h=2, pool_w=2, stride=2)
        self.layers ['Affine1'] = layers.Affine (self.params ['W2'], self.params ['b2'])
        self.layers ['Relu2'] = layers.Relu ()
        self.layers ['Affine2'] = layers.Affine (self.params ['W3'], self.params ['b3'])

        self.last_layer = layers.SoftmaxWithLoss ()
Esempio n. 2
0
 def __init__(self,
              input_dim=(1, 28, 28),
              conv_param_1={
                  'filter_num': 10,
                  'filter_size': 7,
                  'pad': 1,
                  'stride': 1
              },
              conv_param_2={
                  'filter_num': 20,
                  'filter_size': 3,
                  'pad': 1,
                  'stride': 1
              },
              hidden_size=50,
              output_size=10,
              weight_init_std=0.01):
     conv_output_size_1 = (input_dim[1] - conv_param_1['filter_size'] + 2 *
                           conv_param_1['pad']) / conv_param_1['stride'] + 1
     conv_output_size_2 = (
         conv_output_size_1 - conv_param_2['filter_size'] +
         2 * conv_param_2['pad']) / conv_param_2['stride'] + 1
     pool_output_size = int(conv_param_2['filter_num'] *
                            (conv_output_size_2 / 2) *
                            (conv_output_size_2 / 2))
     # 重みの初期化
     self.params = {}
     self.params['W1'] = weight_init_std * np.random.randn(
         conv_param_1['filter_num'], input_dim[0],
         conv_param_1['filter_size'], conv_param_1['filter_size'])
     self.params['b1'] = np.zeros(conv_param_1['filter_num'])
     self.params['W2'] = weight_init_std * np.random.randn(
         conv_param_2['filter_num'], conv_param_1['filter_num'],
         conv_param_2['filter_size'], conv_param_2['filter_size'])
     self.params['b2'] = np.zeros(conv_param_2['filter_num'])
     self.params['W3'] = weight_init_std * np.random.randn(
         pool_output_size, hidden_size)
     self.params['b3'] = np.zeros(hidden_size)
     self.params['W4'] = weight_init_std * np.random.randn(
         hidden_size, output_size)
     self.params['b4'] = np.zeros(output_size)
     # レイヤの生成
     self.layers = OrderedDict()
     self.layers['Conv1'] = layers.Convolution(self.params['W1'],
                                               self.params['b1'],
                                               conv_param_1['stride'],
                                               conv_param_1['pad'])
     self.layers['Relu1'] = layers.Relu()
     self.layers['Conv2'] = layers.Convolution(self.params['W2'],
                                               self.params['b2'],
                                               conv_param_2['stride'],
                                               conv_param_2['pad'])
     self.layers['Relu2'] = layers.Relu()
     self.layers['Pool1'] = layers.Pooling(pool_h=2, pool_w=2, stride=2)
     self.layers['Affine1'] = layers.Affine(self.params['W3'],
                                            self.params['b3'])
     self.layers['Relu3'] = layers.Relu()
     self.layers['Affine2'] = layers.Affine(self.params['W4'],
                                            self.params['b4'])
     self.last_layer = layers.SoftmaxWithLoss()
    def __init__(self,
                 input_size,
                 hidden_size,
                 output_size,
                 weight_init_std=0.01):
        # 가중치 초기화
        self.params = {}
        self.params['W1'] = weight_init_std * np.random.randn(
            input_size, hidden_size)
        self.params['b1'] = np.zeros(hidden_size)
        self.params['W2'] = weight_init_std * np.random.randn(
            hidden_size, output_size)
        self.params['b2'] = np.zeros(output_size)
        # print(self.params)

        # 계층 생성 (Affine - Relu - Affine - SoftmaxWithLoss)
        # 신경망 계층을 OrderedDict(순서가 있는 딕셔너리)에 보관하는 점이 중요
        self.layers = OrderedDict()
        self.layers['Affine1'] = layers.Affine(self.params['W1'],
                                               self.params['b1'])
        self.layers['Relu1'] = layers.Relu()
        self.layers['Affine2'] = layers.Affine(self.params['W2'],
                                               self.params['b2'])
        # 마지막 출력 층 생성
        self.lastLayer = layers.SoftmaxWithLoss()
Esempio n. 4
0
    def __init__(self,
                 size_in,
                 list_size_hidden,
                 size_out,
                 lambda_l2=0.,
                 ratio_dropout=None):
        if isinstance(list_size_hidden, int):
            list_size_hidden = [list_size_hidden]
        self.size_units = [size_in] + list_size_hidden + [size_out]
        self.lambda_l2 = lambda_l2

        self.params = {}
        self.layers = OrderedDict()
        for i in range(len(self.size_units) - 1):
            affine, weight, bias, relu, dropout =\
                [k + str(i + 1) for k in ('Affine', 'W', 'b', 'Relu', 'Dropout')]
            scale = np.sqrt(2.0 / self.size_units[i])
            self.params[weight] =\
                scale * np.random.randn(self.size_units[i], self.size_units[i+1])
            self.params[bias] = np.zeros(self.size_units[i + 1])

            self.layers[affine] = clay.Affine(self.params[weight],
                                              self.params[bias])
            if ratio_dropout is not None:
                self.layers[dropout] = clay.Dropout(ratio_dropout)
            if i < len(self.size_units) - 2:
                self.layers[relu] = clay.Relu()
            else:
                self.lastLayer = clay.SoftmaxWithLoss()
Esempio n. 5
0
    def __init__(self,
                 input_size,
                 hidden_size_list,
                 output_size,
                 activation='relu',
                 weight_init_std='relu',
                 weight_decay_lambda=0,
                 use_dropout=False,
                 dropout_ratio=0.5,
                 use_batchnorm=False):
        self.input_size = input_size
        self.output_size = output_size
        self.hidden_size_list = hidden_size_list
        self.hidden_layer_num = len(hidden_size_list)
        self.use_dropout = use_dropout
        self.weight_decay_lambda = weight_decay_lambda
        self.use_batchnorm = use_batchnorm
        self.params = {}

        # 重みの初期化
        self.__init_weight(weight_init_std)

        # レイヤの生成
        activation_layer = {'sigmoid': layers.Sigmoid, 'relu': layers.Relu}
        self.layers = OrderedDict()
        for idx in range(1, self.hidden_layer_num + 1):
            self.layers['Affine' + str(idx)] = layers.Affine(
                self.params['W' + str(idx)], self.params['b' + str(idx)])
            if self.use_batchnorm:
                self.params['gamma' + str(idx)] = np.ones(
                    hidden_size_list[idx - 1])
                self.params['beta' + str(idx)] = np.zeros(
                    hidden_size_list[idx - 1])
                self.layers['BatchNorm' +
                            str(idx)] = layers.BatchNormalization(
                                self.params['gamma' + str(idx)],
                                self.params['beta' + str(idx)])

            self.layers['Activation_function' +
                        str(idx)] = activation_layer[activation]()

            if self.use_dropout:
                self.layers['Dropout' +
                            str(idx)] = layers.Dropout(dropout_ratio)

        idx = self.hidden_layer_num + 1
        self.layers['Affine' + str(idx)] = layers.Affine(
            self.params['W' + str(idx)], self.params['b' + str(idx)])

        self.last_layer = layers.SoftmaxWithLoss()
Esempio n. 6
0
    def __init__(self, size_in, size_hidden, size_out, std_init_weight=0.01):
        self.params = {}
        self.params['W1'] = std_init_weight * np.random.randn(
            size_in, size_hidden)
        self.params['b1'] = np.zeros(size_hidden)
        self.params['W2'] = std_init_weight * np.random.randn(
            size_hidden, size_out)
        self.params['b2'] = np.zeros(size_out)

        self.layers = OrderedDict()
        self.layers['Affine1'] = clay.Affine(self.params['W1'],
                                             self.params['b1'])
        self.layers['Relu1'] = clay.Relu()
        self.layers['Affine2'] = clay.Affine(self.params['W2'],
                                             self.params['b2'])
        self.lastLayer = clay.SoftmaxWithLoss()
    def __init__(self, input_size, hidden_size_list, output_size, activation='relu', weight_init_std='relu'):
        self.input_size = input_size
        self.output_size = output_size
        self.hidden_size_list = hidden_size_list
        self.hidden_layer_num = len(hidden_size_list)
        self.params = {}

        # 重みの初期化
        self.__init_weight(weight_init_std)

        # レイヤの生成, sigmoidとreluのみ扱う
        activation_layer = {'sigmoid': layers.Sigmoid, 'relu': layers.Relu}
        self.layers = OrderedDict() # 追加した順番に格納
        for idx in range(1, self.hidden_layer_num+1):
            self.layers['Affine' + str(idx)] = layers.Affine(self.params['W' + str(idx)], self.params['b' + str(idx)])
            self.layers['Activation_function' + str(idx)] = activation_layer[activation]()

        idx = self.hidden_layer_num + 1
        self.layers['Affine' + str(idx)] = layers.Affine(self.params['W' + str(idx)], self.params['b' + str(idx)])

        self.last_layer = layers.SoftmaxWithLoss()
    def __init__(self,
                 input_size,
                 hidden_size,
                 output_size,
                 weight_init_std=0.01):
        # 重みの初期化
        self.params = {}
        self.params['W1'] = weight_init_std * np.random.randn(
            input_size, hidden_size)
        self.params['W2'] = weight_init_std * np.random.randn(
            hidden_size, output_size)
        self.params['b1'] = np.zeros(hidden_size)
        self.params['b2'] = np.zeros(output_size)

        # レイヤの生成
        self.layers = OrderedDict()
        self.layers['Affine1'] = layers.Affine(self.params['W1'],
                                               self.params['b1'])
        self.layers['Relu1'] = layers.Relu()
        self.layers['Affine2'] = layers.Affine(self.params['W2'],
                                               self.params['b2'])

        self.lastLayer = layers.SoftmaxWithLoss()
    def __init__(self,
                 input_size,
                 hidden_size_list,
                 output_size,
                 activation='relu',
                 weight_init_std='relu',
                 weight_decay_lambda=0,
                 use_dropout=False,
                 dropout_ration=0.5,
                 use_batchnorm=False):

        self.input_size = input_size
        self.hidden_size_list = hidden_size_list
        self.hidden_layer_num = len(hidden_size_list)
        self.output_size = output_size

        self.weight_decay_lambda = weight_decay_lambda
        self.use_dropout = use_dropout
        self.use_batchnorm = use_batchnorm
        self.params = {}

        # 가중치 초기화
        self.__init_weight(weight_init_std)

        # 계층 생성
        activation_layer = {'sigmoid': layers.Sigmoid, 'relu': layers.Relu}
        self.layers = OrderedDict()

        # < 은닉층 생성 >
        # self.hidden_layer_num 개수만큼
        for idx in range(1, self.hidden_layer_num + 1):
            # (1) Affine 계층
            self.layers['Affine' + str(idx)] = layers.Affine(
                self.params['W' + str(idx)], self.params['b' + str(idx)])

            # (2) BatchNormalization 계층
            if self.use_batchnorm:
                # 각 계층별 배치 정규화 계층에서 사용할 매개변수 최기화
                # 원본 그대로에서 시작하는 것으로 초기화. 1배 확대(gamma), 이동 0(beta)
                self.params['gamma' + str(idx)] = np.ones(
                    hidden_size_list[idx - 1])  # 1
                self.params['beta' + str(idx)] = np.zeros(
                    hidden_size_list[idx - 1])  # 0
                self.layers['BatchNorm' +
                            str(idx)] = layers.BatchNormalization(
                                self.params['gamma' + str(idx)],
                                self.params['beta' + str(idx)])

            # (3) 활성화 함수
            self.layers['Activation_function' +
                        str(idx)] = activation_layer[activation]()

            # (4) Dropout 계층
            if self.use_dropout:
                self.layers['Dropout' +
                            str(idx)] = layers.Dropout(dropout_ration)

        # < 출력층 Affine 생성 >
        idx = self.hidden_layer_num + 1
        self.layers['Affine' + str(idx)] = layers.Affine(
            self.params['W' + str(idx)], self.params['b' + str(idx)])

        # < 출력층 생성 >
        # 출력층 활성화 함수로 Softmax, 손실함수로 cross_entropy_error 사용
        self.last_layer = layers.SoftmaxWithLoss()
    def __init__(self,
                 input_dim=(1, 28, 28),
                 conv_param_1={
                     'filter_num': 16,
                     'filter_size': 3,
                     'pad': 1,
                     'stride': 1
                 },
                 conv_param_2={
                     'filter_num': 16,
                     'filter_size': 3,
                     'pad': 1,
                     'stride': 1
                 },
                 conv_param_3={
                     'filter_num': 32,
                     'filter_size': 3,
                     'pad': 1,
                     'stride': 1
                 },
                 conv_param_4={
                     'filter_num': 32,
                     'filter_size': 3,
                     'pad': 2,
                     'stride': 1
                 },
                 conv_param_5={
                     'filter_num': 64,
                     'filter_size': 3,
                     'pad': 1,
                     'stride': 1
                 },
                 conv_param_6={
                     'filter_num': 64,
                     'filter_size': 3,
                     'pad': 1,
                     'stride': 1
                 },
                 hidden_size=50,
                 output_size=10):
        # 重みの初期化===========
        # 各層のニューロンひとつあたりが、前層のニューロンといくつのつながりがあるか
        pre_node_nums = np.array([
            1 * 3 * 3, 16 * 3 * 3, 16 * 3 * 3, 32 * 3 * 3, 32 * 3 * 3,
            64 * 3 * 3, 64 * 4 * 4, hidden_size
        ])
        wight_init_scales = np.sqrt(2.0 / pre_node_nums)  # Heの初期値

        self.params = {}
        pre_channel_num = input_dim[0]
        for idx, conv_param in enumerate([
                conv_param_1, conv_param_2, conv_param_3, conv_param_4,
                conv_param_5, conv_param_6
        ]):
            self.params[
                'W' + str(idx + 1)] = wight_init_scales[idx] * np.random.randn(
                    conv_param['filter_num'], pre_channel_num,
                    conv_param['filter_size'], conv_param['filter_size'])
            self.params['b' + str(idx + 1)] = np.zeros(
                conv_param['filter_num'])
            pre_channel_num = conv_param['filter_num']
        self.params['W7'] = wight_init_scales[6] * np.random.randn(
            pre_node_nums[6], hidden_size)
        print(self.params['W7'].shape)
        self.params['b7'] = np.zeros(hidden_size)
        self.params['W8'] = wight_init_scales[7] * np.random.randn(
            pre_node_nums[7], output_size)
        self.params['b8'] = np.zeros(output_size)

        # レイヤの生成===========
        self.layers = []
        self.layers.append(
            layers.Convolution(self.params['W1'], self.params['b1'],
                               conv_param_1['stride'], conv_param_1['pad']))
        self.layers.append(layers.Relu())
        self.layers.append(
            layers.Convolution(self.params['W2'], self.params['b2'],
                               conv_param_2['stride'], conv_param_2['pad']))
        self.layers.append(layers.Relu())
        self.layers.append(layers.Pooling(pool_h=2, pool_w=2, stride=2))
        self.layers.append(
            layers.Convolution(self.params['W3'], self.params['b3'],
                               conv_param_3['stride'], conv_param_3['pad']))
        self.layers.append(layers.Relu())
        self.layers.append(
            layers.Convolution(self.params['W4'], self.params['b4'],
                               conv_param_4['stride'], conv_param_4['pad']))
        self.layers.append(layers.Relu())
        self.layers.append(layers.Pooling(pool_h=2, pool_w=2, stride=2))
        self.layers.append(
            layers.Convolution(self.params['W5'], self.params['b5'],
                               conv_param_5['stride'], conv_param_5['pad']))
        self.layers.append(layers.Relu())
        self.layers.append(
            layers.Convolution(self.params['W6'], self.params['b6'],
                               conv_param_6['stride'], conv_param_6['pad']))
        self.layers.append(layers.Relu())
        self.layers.append(layers.Pooling(pool_h=2, pool_w=2, stride=2))
        self.layers.append(layers.Affine(self.params['W7'], self.params['b7']))
        self.layers.append(layers.Relu())
        self.layers.append(layers.Dropout(0.5))
        self.layers.append(layers.Affine(self.params['W8'], self.params['b8']))
        self.layers.append(layers.Dropout(0.5))

        self.last_layer = layers.SoftmaxWithLoss()