Esempio n. 1
0
    def gradient(self, x, d):
        # forward
        self.loss(x, d, train_flg=True)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 設定
        grads = {}
        for idx in range(1, self.hidden_layer_num + 2):
            grads['W' + str(idx)] = self.layers['Affine' + str(
                idx)].dW + self.weight_decay_lambda * self.params['W' +
                                                                  str(idx)]
            grads['b' + str(idx)] = self.layers['Affine' + str(idx)].db

            if self.use_batchnorm and idx != self.hidden_layer_num + 1:
                grads['gamma' + str(idx)] = self.layers['BatchNorm' +
                                                        str(idx)].dgamma
                grads['beta' + str(idx)] = self.layers['BatchNorm' +
                                                       str(idx)].dbeta

        return grads
Esempio n. 2
0
    def gradient(self, x, t):
        """勾配を求める(誤差逆伝播法)

        Parameters
        ----------
        x : 入力データ
        t : 教師ラベル

        Returns
        -------
        各層の勾配を持ったディクショナリ変数
            grads['W1']、grads['W2']、...は各層の重み
            grads['b1']、grads['b2']、...は各層のバイアス
        """
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 設定
        grads = {}
        for idx in range(1, self.hidden_layer_num + 2):
            grads['W' + str(idx)] = self.layers['Affine' + str(
                idx)].d_W + self.weight_decay_lambda * self.layers['Affine' +
                                                                   str(idx)].W
            grads['b' + str(idx)] = self.layers['Affine' + str(idx)].d_b

        return grads
    def gradient(self, x, d):
        # forward
        self.loss(x, d)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)
        layers = list(self.layers.values())

        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 設定
        grad = {}
        grad['W1'], grad['b1'] = self.layers['Conv1'].dW, self.layers[
            'Conv1'].db
        grad['W2'], grad['b2'] = self.layers['Conv2'].dW, self.layers[
            'Conv2'].db
        grad['W3'], grad['b3'] = self.layers['Affine1'].dW, self.layers[
            'Affine1'].db
        grad['W4'], grad['b4'] = self.layers['Affine2'].dW, self.layers[
            'Affine2'].db

        return grad
Esempio n. 4
0
    def gradient(self, x_batch, t_batch):
        # forward
        self.loss(x_batch, t_batch, train_flag=True)
        # backward
        dout = 1
        dout = self.last_layer.backward(d_y=dout)
        layers = list(
            self.layers.values())  # self.layers is a dict not a list!!!
        layers.reverse()

        for layer in layers:
            dout = layer.backward(dout)
        grads = {}
        for idx in range(1, len(self.hidden_size_list) + 2):
            grads['W' + str(idx)] = self.layers['Affine' + str(
                idx)].d_W + self.weight_decay_lambda * self.layers['Affine' +
                                                                   str(idx)].W
            grads['b' + str(idx)] = self.layers['Affine' + str(idx)].d_b
        # calculate gradients of gamma & beta
        # last Affine layer need no BN
        if self.use_batchnorm:
            for idx in range(1, self.hidden_layer_num + 1):
                grads['gamma' + str(idx)] = self.layers['BatchNorm' +
                                                        str(idx)].dgamma
                grads['beta' + str(idx)] = self.layers['BatchNorm' +
                                                       str(idx)].dbeta
        return grads
    def gradient(self, x, t):
        """기울기를 구한다

        Parameters
        ----------
        x : 입력 데이터
        t : 정답 레이블

        Returns
        -------
        각 층의 기울기를 담은 사전(dictionary) 변수
            grads['W1']、grads['W2']、... 각 층의 가중치
            grads['b1']、grads['b2']、... 각 층의 편향
        """
        # forward
        loss = self.loss(x, t, train_flg=True)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 결과 저장
        grads = {}
        # hidden_layer_num + 1 만큼 (출력층 Affine 포함)
        for idx in range(1, self.hidden_layer_num + 2):
            # 각 Affine 층의 가중치 매개변수에 가중치 감소의 미분값을 더해준다.
            grads['W' + str(idx)] = self.layers['Affine' + str(
                idx)].dW + self.weight_decay_lambda * self.params['W' +
                                                                  str(idx)]
            grads['b' + str(idx)] = self.layers['Affine' + str(idx)].db

            # < BatchNormalization 계층 사용한다면 매개변수 갱신해준다.>
            if self.use_batchnorm and idx != self.hidden_layer_num + 1:
                grads['gamma' + str(idx)] = self.layers['BatchNorm' +
                                                        str(idx)].dgamma
                grads['beta' + str(idx)] = self.layers['BatchNorm' +
                                                       str(idx)].dbeta

        return grads
    def gradient(self, x, d):
        # forward
        self.loss(x, d)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)

        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 設定
        grad = {}
        for idx in range(1, self.hidden_layer_num+2):
            grad['W' + str(idx)] = self.layers['Affine' + str(idx)].dW
            grad['b' + str(idx)] = self.layers['Affine' + str(idx)].db

        return grad
    def gradient(self, x, t):
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.lastLayer.backward(dout)

        # 반대 순서로 각 계층의 backward() 메서드를 호출하기만 하면 처리된다
        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 결과 저장
        grads = {}
        grads['W1'], grads['b1'] = self.layers['Affine1'].dW, self.layers[
            'Affine1'].db
        grads['W2'], grads['b2'] = self.layers['Affine2'].dW, self.layers[
            'Affine2'].db

        return grads
Esempio n. 8
0
    def gradient(self, x_batch, t_batch):
        # forward
        logging.info('Forward Start...')
        self.loss(x_batch, t_batch)
        logging.info('Forward End.')
        # backward
        logging.info('Backward Start...')
        dout = 1
        logging.info('Loss Layer> {}'.format(self.last_layer))
        dout = self.last_layer.backward(d_y=dout)
        layers = list(
            self.layers.values())  # self.layers is a dict not a list!!!
        layers.reverse()

        for layer in layers:
            dout = layer.backward(dout)
            logging.info('Backward Layer> {}'.format(layer))
        logging.info('Backward End.')
        grad = {}
        for idx in range(1, len(self.hidden_size_list) + 2):
            grad['W' + str(idx)] = self.layers['Affine' + str(idx)].d_W
            grad['b' + str(idx)] = self.layers['Affine' + str(idx)].d_b
        return grad