Esempio n. 1
0
    def get_spatial(self, net):
        '''
        Gets the spatial action of the network
        '''
        if self.debug:
            log("getting spatial action")
            s = Stopwatch()
        net = tf.layers.conv2d(self.spatial,
                               32, [3, 3],
                               strides=1,
                               padding='SAME',
                               activation=tf.nn.relu,
                               name="finalConv")
        net = tf.layers.conv2d(net,
                               1, [1, 1],
                               strides=1,
                               padding='SAME',
                               name="conv1x1")

        flat = tf.layers.flatten(net)
        dist = tf.distributions.Categorical(logits=flat)
        sample = dist.sample()

        coords = tf.unravel_index(sample, [self.rows, self.columns / 2])

        if self.debug:
            log("Finished spatial action inference. Took: " + s.delta)
        return coords
Esempio n. 2
0
    def __init__(self, name, debug=False):
        '''
        Build agent graph.
        '''

        self.name = name
        self.debug = debug
        self.fitness_score = 0
        self.fitness_averaging_list = []
        self.refbot_position = -1
        self.mask_output = False
        if self.debug:
            log("Running conv2d on " + device)
        # with tf.device('/' + device + ':0'):
        with tf.name_scope(str(self.name) + 'Model'):
            self.input = Layers.Input(shape=(int(constants.map_width / 2),
                                             constants.map_height,
                                             input_channels))

            self.base = self.add_base()
            self.get_non_spatial = self.add_non_spatial(self.base)
            self.get_spatial = self.add_spatial(self.base,
                                                self.get_non_spatial)

            self.model = tf.keras.models.Model(
                inputs=self.input,
                outputs=[self.get_non_spatial, self.get_spatial])
        #self.model.compile()
        if self.debug:
            print(">> SCUD2 >> Total number of parameters: ",
                  self.model.count_params()
                  )  # currently 561 711, max 4 000 000 in paper
        #self.model.compile(optimizer='rmsprop') #gives error of 'only tf native optimizers are supported in eager mode'
        self.tau_lineage = []
        return None
Esempio n. 3
0
    def add_non_spatial(self, net):
        '''
        Infers the non-spatial action of the network
        '''
        if self.debug:
            log("Getting non-spatial action")
            s = Stopwatch()

        net = custom_layers.add_inception_resnet_B(net, '1a0')
        net = custom_layers.add_inception_resnet_B(net, '2a0')

        net = Layers.Conv2D(8, [1, 1],
                            strides=1,
                            padding='SAME',
                            activation=tf.nn.relu,
                            name="non_spat_conv2")(net)
        flatten = Layers.Flatten()(net)
        non_spatial = Layers.Dense(256,
                                   activation=tf.nn.relu,
                                   name="non_spatial")(flatten)
        a0_logits = Layers.Dense(constants.n_base_actions,
                                 name="a0")(non_spatial)

        a0_sampled = SampleCategoricalLayer()(a0_logits)

        if self.debug:
            log("Finished non-spatial action. Took: " + s.delta)

        return a0_sampled
Esempio n. 4
0
    def step(self, inputs, batch_predict=False):
        '''
        Takes a step of the Scud model.
        If batch_predict is set to True, we assume inputs is a batch of all env obs 
        and return an array of the corresponding actions.
        '''

        if batch_predict == True:
            batch_list = []
            for game_state in inputs:
                if type(game_state) == util.ControlObject:
                    continue
                k, self.rows, self.columns = obs_parsing.parse_obs(game_state)
                batch_list.append(k)
            if len(batch_list) == 0:
                return [(0, 0, 3) for _ in range(len(inputs))]
            spatial = tf.stack(batch_list, axis=0)
        else:
            if self.mask_output == True or type(inputs) == util.ControlObject:
                if self.debug:
                    print("scud ", self.name, 'output masked')
                return 0, 0, 3
            k, self.rows, self.columns = obs_parsing.parse_obs(inputs)
            spatial = tf.expand_dims(
                k, axis=0)  # now should have shape (1, 8, 8, 25)

        a0, a1 = self.model.predict(spatial)

        arr = []
        rng = 1
        sep_cnt = 0
        if batch_predict:
            rng = len(inputs)

        for i in range(rng):
            if batch_predict:
                if type(inputs[i]) == util.ControlObject:
                    arr.append((0, 0, 3))
                    continue

            building = a0[sep_cnt]
            coords = tf.unravel_index(a1[sep_cnt],
                                      [self.rows, self.columns / 2])

            x = int(coords[0])
            y = int(coords[1])
            if self.debug:
                log("x, y = " + str(x) + ", " + str(y))
            arr.append((x, y, building))
            sep_cnt += 1

        if batch_predict:
            return arr
        else:
            x, y, building = arr[0]
            return x, y, building
Esempio n. 5
0
    def add_base(self):
        if self.debug:
            log("Adding base")
            s = Stopwatch()
        with tf.name_scope("adding_base") as scope:
            net = self.spatial
            for i in range(2):
                net = tf.layers.conv2d(net,
                                       32, [3, 3],
                                       strides=1,
                                       padding='SAME',
                                       activation=tf.nn.relu,
                                       name="conv" +
                                       str(i))  # ok well this takes 5 seconds

        if self.debug:
            log("Finished adding base. Took: " + s.delta)

        return net
Esempio n. 6
0
    def get_non_spatial(self, net):
        '''
        Infers the non-spatial action of the network
        '''
        if self.debug:
            log("Getting non-spatial action")
            s = Stopwatch()
        non_spatial = tf.layers.dense(tf.layers.flatten(net),
                                      256,
                                      activation=tf.nn.relu,
                                      name="non_spatial")
        a0 = tf.layers.dense(non_spatial, n_base_actions, name="a0")

        # TODO: possibly softmax this and then transform it into an int from 0 - 4
        # possibly use tf autoregressive distribution
        dist = tf.distributions.Categorical(logits=a0)
        sample = dist.sample()

        if self.debug:
            log("Finished non-spatial action. Took: " + s.delta)

        return sample
Esempio n. 7
0
    def add_spatial(self, net, a0):
        '''
        Gets the spatial action of the network
        '''
        if self.debug:
            log("getting spatial action")
            s = Stopwatch()

        one_hot_a0 = OneHotLayer(constants.n_base_actions)(a0)

        k = net.get_shape().as_list()
        broadcast_stats = Layers.RepeatVector(int(k[1] * k[2]))(one_hot_a0)
        broadcast_stats2 = Layers.Reshape(
            (k[1], k[2], constants.n_base_actions))(broadcast_stats)
        net = Layers.concatenate([net, broadcast_stats2],
                                 axis=-1)  # (?, 8, 8, 38)

        net = Layers.Conv2D(64, [3, 3],
                            strides=1,
                            padding='SAME',
                            activation=tf.nn.relu,
                            name="finalConv")(net)

        net = custom_layers.add_inception_resnet_B(net, '1a1')
        net = custom_layers.add_inception_resnet_B(net, '2a1')

        net = Layers.Conv2D(1, [1, 1],
                            strides=1,
                            padding='SAME',
                            name="conv1x1")(net)

        logits = Layers.Flatten()(net)

        a1_sampled = SampleCategoricalLayer()(logits)

        if self.debug:
            log("Finished spatial action inference. Took: " + s.delta)
        return a1_sampled
Esempio n. 8
0
    def add_base(self):
        if self.debug:
            log("Adding base")
            s = Stopwatch()
        with tf.name_scope("adding_base") as scope:
            net = self.input

            net = Layers.Conv2D(32, [3, 3],
                                strides=1,
                                padding='SAME',
                                activation=tf.nn.relu,
                                name="baseConv1")(net)
            net = Layers.Conv2D(32, [3, 3],
                                strides=1,
                                padding='SAME',
                                activation=tf.nn.relu,
                                name="baseConv2")(net)
            net = Layers.Conv2D(64, [3, 3],
                                strides=1,
                                padding='SAME',
                                activation=tf.nn.relu,
                                name="baseConv3")(net)

            net_a = Layers.Conv2D(64, [1, 1],
                                  strides=1,
                                  padding='SAME',
                                  activation=tf.nn.relu,
                                  name="baseConv4a")(net)
            net_a = Layers.Conv2D(96, [3, 3],
                                  strides=1,
                                  padding='SAME',
                                  activation=tf.nn.relu,
                                  name="baseConv5a")(net_a)

            net_b = Layers.Conv2D(64, [1, 1],
                                  strides=1,
                                  padding='SAME',
                                  activation=tf.nn.relu,
                                  name="baseConv4b")(net)
            net_b = Layers.Conv2D(64, [8, 1],
                                  strides=1,
                                  padding='SAME',
                                  activation=tf.nn.relu,
                                  name="baseConv5b")(net_b)
            net_b = Layers.Conv2D(64, [1, 8],
                                  strides=1,
                                  padding='SAME',
                                  activation=tf.nn.relu,
                                  name="baseConv6b")(net_b)
            net_b = Layers.Conv2D(96, [3, 3],
                                  strides=1,
                                  padding='SAME',
                                  activation=tf.nn.relu,
                                  name="baseConv7b")(net_b)

            net = custom_layers.add_inception_resnet_A(net, 'A1')
            net = custom_layers.add_inception_resnet_A(net, 'A2')
        if self.debug:
            log("Finished adding base. Took: " + s.delta)

        return net
Esempio n. 9
0
                  str(path)[-50:])

    def load(self, filepath, savename):
        if savename is None:
            path = os.path.join(filepath, str(self.name) + '.h5')
        else:
            if savename.endswith('.h5') == False:
                path = os.path.join(filepath, str(savename) + '.h5')
            else:
                path = os.path.join(filepath, str(savename))
        self.model = tf.keras.models.load_model(
            path, custom_objects=custom_keras_layers)
        if self.refbot_position != -1:
            print(">> SCUD >> ", self.name, "(refbot pos ",
                  self.refbot_position, ") had model restored from file ",
                  str(path)[-50:])
        else:
            print(">> SCUD >> ", self.name, " had model restored from file ",
                  str(path)[-50:])

    def __str__(self):
        return "SCUD2 [Name: {:20} | Masking: {:3} | Refbot pos: {:2d}]".format(
            self.name, self.mask_output, self.refbot_position)


if __name__ == '__main__':
    k = Stopwatch()
    s = Scud('www', debug=True)
    we = s.get_flat_weights()
    log("Round-time was {}".format(k.delta))
Esempio n. 10
0
    def __init__(self, obs, name, debug=False):
        '''
        Initialize Bot.
        Load all game state information.
        '''

        self.debug = debug
        try:
            self.game_state = obs[0]
        except IOError:
            print("Cannot load Game State")

        self.full_map = self.game_state['gameMap']
        self.rows = self.game_state['gameDetails']['mapHeight']
        self.columns = self.game_state['gameDetails']['mapWidth']
        self.command = ''

        self.player_buildings = self.getPlayerBuildings()
        self.opponent_buildings = self.getOpponentBuildings()
        self.projectiles = self.getProjectiles()

        self.player_info = self.getPlayerInfo('A')
        self.opponent_info = self.getPlayerInfo('B')

        self.round = self.game_state['gameDetails']['round']

        self.prices = {
            "ATTACK":
            self.game_state['gameDetails']['buildingPrices']['ATTACK'],
            "DEFENSE":
            self.game_state['gameDetails']['buildingPrices']['DEFENSE'],
            "ENERGY":
            self.game_state['gameDetails']['buildingPrices']['ENERGY']
        }

        if self.debug and debug_verbose:
            log("rows: " + str(self.rows))
            log("columns: " + str(self.columns))
            log("player_buildings: " + str(self.player_buildings))
            log("opp_buildings: " + str(self.opponent_buildings))
            log("projectiles: " + str(self.projectiles))
            log("player_info: " + str(self.player_info))
            log("opp_info: " + str(self.opponent_info))
            log("Round: " + str(self.round))
            log("Prices: " + str(self.prices))

        # getting inputs
        with tf.name_scope("shaping_inputs") as scope:
            if self.debug:
                log("Shaping inputs...")
                s = Stopwatch()

            pb = tf.one_hot(indices=self.player_buildings,
                            depth=4,
                            axis=-1,
                            name="player_buildings")  # 20x20x4
            ob = tf.one_hot(indices=self.opponent_buildings,
                            depth=4,
                            axis=-1,
                            name="opp_buildings")  # 20x20x4
            proj = tf.one_hot(indices=self.projectiles,
                              depth=3,
                              axis=-1,
                              name='projectiles')  # 20x40x3
            k = proj.get_shape().as_list()
            proj = tf.reshape(proj,
                              [k[0], k[1] / 2, 6
                               ])  # 20x20x6. Only works for single misssiles

            self.non_spatial = list(self.player_info.values())[1:] + list(
                self.opponent_info.values())[1:] + list(
                    self.prices.values())  # 11x1
            self.non_spatial = tf.cast(self.non_spatial, dtype=tf.float32)
            # broadcasting the non-spatial features to the channel dimension
            broadcast_stats = tf.tile(
                tf.expand_dims(tf.expand_dims(self.non_spatial, axis=0),
                               axis=0), [k[0], k[1] / 2, 1])  # now 20x20x11

            # adding all the inputs together via the channel dimension
            self.spatial = tf.concat([pb, ob, proj, broadcast_stats],
                                     axis=-1)  # 20x20x(14 + 11)
            self.spatial = tf.expand_dims(self.spatial, axis=0)

            if self.debug:
                log("Finished shaping inputs. Took " + s.delta)

        return None
Esempio n. 11
0
    def generate_action(self):
        '''
        Scud model estimator
        '''
        if self.debug:
            log("Running conv2d on " + device)
        with tf.device('/' + device + ':0'):
            net = self.add_base()
            #print("state shape: ", net.shape) # (1, 20, 20, 32)

        ## split into non-spatial and spatial action path
        a0 = self.get_non_spatial(net)
        building = int(a0)  # now an int between 0 and 3
        if self.debug:
            log("a0 = " + str(a0))

        coords = self.get_spatial(net)
        x = int(coords[0])
        y = int(coords[1])
        if self.debug:
            log("x, y = " + str(x) + ", " + str(y))

        ## loading the state (for RNN stuffs)
        if self.debug:
            log("Loading state")
            sss = Stopwatch()
        _ = np.load('scudstate.npy')  # takes ~ 0.031s
        if self.debug:
            log("State loaded. Took: " + sss.delta)

        ## saving the state (for RNN stuffs)
        if self.debug:
            log("Saving state")
            ss = Stopwatch()
        new_state = net
        np.save('scudstate.npy', new_state)
        if self.debug:
            log("State saved. Took: " + ss.delta)

        #util.write_action(x,y,building)
        return x, y, building
Esempio n. 12
0
import common.util as util

Net = tf.contrib.eager.Network
'''
Internal agent config
'''
debug = True
n_base_actions = 4  # number of base actions -- 0=NO OP, 1=DEFENSE, 2=OFFENSE, 3=ENERGY...
debug_verbose = False
endpoints = {}
device = 'cpu'
tf.enable_eager_execution()
# let an example map size be 20x40, so each player's building area is 20x20

if debug_verbose and debug:
    log("Testing tensorflow")
    s = Stopwatch()
    print("TensorFlow version: {}".format(tf.VERSION))
    print("Eager execution: {}".format(tf.executing_eagerly()))

    log("Finished, took: " + s.delta)


class Scud(object):
    def __init__(self, obs, name, debug=False):
        '''
        Initialize Bot.
        Load all game state information.
        '''

        self.debug = debug