def get_pose3d_predictor(ckpt_dir,
                         ckpt_name,
                         filter_widths,
                         causal=False,
                         channels=1024):
    """
    加载3d关节点坐标预测器
    Args:
        channels:
        ckpt_dir:
        ckpt_name:
        filter_widths:
        causal:

    Returns: pose3d_predictor

    """
    ckpt_path = os.path.join(ckpt_dir, ckpt_name)
    print('Loading checkpoint', ckpt_path)
    checkpoint = torch.load(ckpt_path,
                            map_location=lambda storage, loc: storage)
    print('This model was trained for {} epochs'.format(checkpoint['epoch']))

    pose3d_predictor = TemporalModel(17,
                                     2,
                                     17,
                                     filter_widths=filter_widths,
                                     causal=causal,
                                     channels=channels)
    receptive_field = pose3d_predictor.receptive_field()
    print('INFO: Receptive field: {} frames'.format(receptive_field))
    pose3d_predictor.load_state_dict(checkpoint['model_pos'])

    return pose3d_predictor.to(device).eval()
Esempio n. 2
0
def create_model():
    # 加载模型
    filter_widths = [int(x) for x in args.architecture.split(',')]
    model_eval = TemporalModel(poses_valid_2d[0].shape[-2],
                               poses_valid_2d[0].shape[-1],
                               dataset.skeleton().num_joints(),
                               filter_widths=filter_widths,
                               causal=args.causal,
                               dropout=args.dropout,
                               channels=args.channels,
                               dense=args.dense)

    receptive_field = model_eval.receptive_field()
    print('INFO: Receptive field: {} frames'.format(receptive_field))
    pad = (receptive_field - 1) // 2  # Padding on each side
    if args.causal:
        print('INFO: Using causal convolutions')
        causal_shift = pad
    else:
        causal_shift = 0

    model_params = 0
    for parameter in model_eval.parameters():
        model_params += parameter.numel()
    print('INFO: Trainable parameter count:', model_params)

    model_eval.to(device)
    return model_eval, causal_shift, pad
def videopose_model_load():
    # load trained model
    from common.model import TemporalModel

    chk_filename = main_path + '/../checkpoint/cpn-pt-243.bin'

    checkpoint = torch.load(chk_filename,
                            map_location=lambda storage, loc: storage)

    model_pos = TemporalModel(17,
                              2,
                              17,
                              filter_widths=[3, 3, 3, 3, 3],
                              causal=False,
                              dropout=False,
                              channels=1024,
                              dense=False)

    #bypass CUDA for now to run only on CPU
    #model_pos = model_pos.cuda()

    model_pos.load_state_dict(checkpoint['model_pos'])

    # Print model's state_dict
    print("Model's state_dict:")
    for param_tensor in model_pos.state_dict():
        print(param_tensor, "\t", model_pos.state_dict()[param_tensor].size())

    receptive_field = model_pos.receptive_field()

    return model_pos
Esempio n. 4
0
def videopose_model_load():
    # load trained model
    from common.model import TemporalModel
    chk_filename = main_path + '/checkpoint/cpn-pt-243.bin'
    checkpoint = torch.load(
        chk_filename,
        map_location=lambda storage, loc: storage)  # 把loc映射到storage
    model_pos = TemporalModel(17,
                              2,
                              17,
                              filter_widths=[3, 3, 3, 3, 3],
                              causal=False,
                              dropout=False,
                              channels=1024,
                              dense=False)
    model_pos = model_pos.cuda()
    model_pos.load_state_dict(checkpoint['model_pos'])
    receptive_field = model_pos.receptive_field()
    return model_pos
Esempio n. 5
0
    return out_camera_params, out_poses_3d, out_poses_2d


cameras_valid, poses_valid, poses_valid_2d = fetch(['detectron2'], None)

model_pos = TemporalModel(poses_valid_2d[0].shape[-2],
                          poses_valid_2d[0].shape[-1],
                          dataset.skeleton().num_joints(),
                          filter_widths=[3, 3, 3, 3, 3],
                          causal=False,
                          dropout=0.25,
                          channels=1024,
                          dense=False)

receptive_field = model_pos.receptive_field()
pad = (receptive_field - 1) // 2
causal_shift = 0
if torch.cuda.is_available():
    model_pos = model_pos.cuda()

checkpoint = torch.load(chk_filename,
                        map_location=lambda storage, loc: storage)
model_pos.load_state_dict(checkpoint['model_pos'])

test_generator = UnchunkedGenerator(cameras_valid,
                                    poses_valid,
                                    poses_valid_2d,
                                    pad=pad,
                                    causal_shift=causal_shift,
                                    augment=False,
Esempio n. 6
0
def analyze_frame(h, frame):

    boxes, keypoints = infer.inference_on_frame(h['predictor'], frame)

    # step 4: prepare data.
    # take 2d keypoints, that's it
    # first element is empty array, second is our actual frame data, a 3d numpy array with first dimension 1, second and third being the 17 joints of 3 doubles each.
    kp = keypoints[1][0][:2, :].T  # extract (x, y) just like in prepare_data_2d_custom code

    # what to do if kp is NaN or missing data or something?
    # I guess just ignore it

    # they do this  at the end of step4. but we keep it simple, and take the data from step2 directly into a variable.
    #     output[canonical_name]['custom'] = [data[0]['keypoints'].astype('float32')]
    #output_custom_canonical_bullshit = kp.astype('float32')

    # this is what happens at  the end of step4. which is a file that is loaded in the beginning of step 5.
    #     np.savez_compressed(os.path.join(args.dataoutputdir, output_prefix_2d + args.output), positions_2d=output, metadata=metadata)

    # this is the bullshit they do in the original script.
    # confusingly, keypoints is actually just data, until it is set to keypoints[positions_2d]
    # keypoints = np.load('data/data_2d_' + args.dataset + '_' + args.keypoints + '.npz', allow_pickle=True)

    # step 5: ..... all the other shit
    # starting to copy stuff over from run.py

    # extract dataset from the init dictionary
    dataset = h['dataset']
    keypoints_metadata = h['keypoints_metadata']
    keypoints_symmetry = h['keypoints_symmetry']

    kps_left = h['kps_left']
    kps_right = h['kps_right']
    joints_left = h['joints_left']
    joints_right = h['joints_right']

    # normalize
    for i in range(len(kp)):
        koord = kp[i]
        kp[i] = normalize_screen_coordinates(koord, h['frame_metadata']['w'], h['frame_metadata']['h'])
    #for kps in enumerate(keypoints):
    #    kps[..., :2] = normalize_screen_coordinates(kps[..., :2], frame_metadata['w'], frame_metadata['h'])

    # this is taken from the args.architecture and run.py and just hardcoded, skipping a lot of nonsense
    filter_widths = [int(x) for x in "3,3,3,3,3".split(',')]
    skeleton_num_joints = dataset.skeleton().num_joints()
    #skeleton_num_joints = 17

    causal = True
    dropout = 0.25
    channels = 1024
    dense = False

    model_pos_train = TemporalModelOptimized1f(kp.shape[-2], kp.shape[-1], skeleton_num_joints,
                                               filter_widths=filter_widths, causal=causal, dropout=dropout,
                                               channels=channels)
    model_pos = TemporalModel(kp.shape[-2], kp.shape[-1], skeleton_num_joints,
                                         filter_widths=filter_widths, causal=causal, dropout=dropout,
                                         channels=channels, dense=dense)

    receptive_field = model_pos.receptive_field()
    print('INFO: Receptive field: {} frames'.format(receptive_field))
    pad = (receptive_field - 1) // 2  # Padding on each side
    #if args.causal:
    #    print('INFO: Using causal convolutions')
    #    causal_shift = pad
    #else:
    #    causal_shift = 0
    causal_shift = pad

    model_params = 0
    for parameter in model_pos.parameters():
        model_params += parameter.numel()
    print('INFO: Trainable parameter count:', model_params)

    if torch.cuda.is_available():
        model_pos = model_pos.cuda()
        model_pos_train = model_pos_train.cuda()

    #if args.resume or args.evaluate:
    if True:
        chk_filename = "checkpoint/pretrained_h36m_detectron_coco.bin"
        print('Loading checkpoint', chk_filename)
        checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage)
        print('This model was trained for {} epochs'.format(checkpoint['epoch']))
        model_pos_train.load_state_dict(checkpoint['model_pos'])
        model_pos.load_state_dict(checkpoint['model_pos'])

        # false in our particular case... we might benefit from getting rid of model_traj,
        # unless it's super fast then we should just keep it in case we ever upgrade
        if 'model_traj' in checkpoint:
            # Load trajectory model if it contained in the checkpoint (e.g. for inference in the wild)
            model_traj = TemporalModel(kp.shape[-2], kp.shape[-1], 1,
                                filter_widths=filter_widths, causal=causal, dropout=dropout, channels=channels,
                                dense=dense)
            if torch.cuda.is_available():
                model_traj = model_traj.cuda()
            model_traj.load_state_dict(checkpoint['model_traj'])
        else:
            model_traj = None

    test_generator = UnchunkedGenerator(None, None, kp,
                                        pad=pad, causal_shift=causal_shift, augment=False,
                                        kps_left=kps_left, kps_right=kps_right,
                                        joints_left=joints_left, joints_right=joints_right)
    print('INFO: Testing on {} frames'.format(test_generator.num_frames()))

    # Evaluate
    def evaluate(eval_generator, action=None, return_predictions=False, use_trajectory_model=False):
        epoch_loss_3d_pos = 0
        epoch_loss_3d_pos_procrustes = 0
        epoch_loss_3d_pos_scale = 0
        epoch_loss_3d_vel = 0
        with torch.no_grad():
            if not use_trajectory_model:
                model_pos.eval()
            else:
                model_traj.eval()
            N = 0
            for _, batch, batch_2d in eval_generator.next_epoch():
                inputs_2d = torch.from_numpy(batch_2d.astype('float32'))
                if torch.cuda.is_available():
                    inputs_2d = inputs_2d.cuda()

                # Positional model
                if not use_trajectory_model:
                    predicted_3d_pos = model_pos(inputs_2d)
                else:
                    predicted_3d_pos = model_traj(inputs_2d)

                # Test-time augmentation (if enabled)
                if eval_generator.augment_enabled():
                    # Undo flipping and take average with non-flipped version
                    predicted_3d_pos[1, :, :, 0] *= -1
                    if not use_trajectory_model:
                        predicted_3d_pos[1, :, joints_left + joints_right] = predicted_3d_pos[1, :, joints_right + joints_left]
                    predicted_3d_pos = torch.mean(predicted_3d_pos, dim=0, keepdim=True)

                if return_predictions:
                    return predicted_3d_pos.squeeze(0).cpu().numpy()

                inputs_3d = torch.from_numpy(batch.astype('float32'))
                if torch.cuda.is_available():
                    inputs_3d = inputs_3d.cuda()
                inputs_3d[:, :, 0] = 0
                if eval_generator.augment_enabled():
                    inputs_3d = inputs_3d[:1]

                error = mpjpe(predicted_3d_pos, inputs_3d)
                epoch_loss_3d_pos_scale += inputs_3d.shape[0]*inputs_3d.shape[1] * n_mpjpe(predicted_3d_pos, inputs_3d).item()

                epoch_loss_3d_pos += inputs_3d.shape[0]*inputs_3d.shape[1] * error.item()
                N += inputs_3d.shape[0] * inputs_3d.shape[1]

                inputs = inputs_3d.cpu().numpy().reshape(-1, inputs_3d.shape[-2], inputs_3d.shape[-1])
                predicted_3d_pos = predicted_3d_pos.cpu().numpy().reshape(-1, inputs_3d.shape[-2], inputs_3d.shape[-1])

                epoch_loss_3d_pos_procrustes += inputs_3d.shape[0]*inputs_3d.shape[1] * p_mpjpe(predicted_3d_pos, inputs)

                # Compute velocity error
                epoch_loss_3d_vel += inputs_3d.shape[0]*inputs_3d.shape[1] * mean_velocity_error(predicted_3d_pos, inputs)

        if action is None:
            print('----------')
        else:
            print('----'+action+'----')
        e1 = (epoch_loss_3d_pos / N)*1000
        e2 = (epoch_loss_3d_pos_procrustes / N)*1000
        e3 = (epoch_loss_3d_pos_scale / N)*1000
        ev = (epoch_loss_3d_vel / N)*1000
        print('Test time augmentation:', eval_generator.augment_enabled())
        print('Protocol #1 Error (MPJPE):', e1, 'mm')
        print('Protocol #2 Error (P-MPJPE):', e2, 'mm')
        print('Protocol #3 Error (N-MPJPE):', e3, 'mm')
        print('Velocity Error (MPJVE):', ev, 'mm')
        print('----------')

        return e1, e2, e3, ev

    image_keypoints2d = kp
    gen = UnchunkedGenerator(None, None, [[image_keypoints2d]],
                             pad=pad, causal_shift=causal_shift, augment=False,
                             kps_left=kps_left, kps_right=kps_right, joints_left=joints_left, joints_right=joints_right)
    prediction = evaluate(gen, return_predictions=True)

    # here is the data format
    # public enum VideoPose3dJointOrder
    # {
    #     HIP = 0,
    #     R_HIP = 1,
    #     R_KNEE = 2,
    #     R_FOOT = 3,
    #     L_HIP = 4,
    #     L_KNEE = 5,
    #     L_FOOT = 6,
    #     SPINE = 7,
    #     THORAX = 8,
    #     NOSE = 9,
    #     HEAD = 10,
    #     L_SHOULDER = 11,
    #     L_ELBOW = 12,
    #     L_WRIST = 13,
    #     R_SHOULDER = 14,
    #     R_ELBOW = 15,
    #     R_WRIST = 16
    # }

    # this bugs out. dunno what the hell they were trying to do.
    # anyway we can fix it by just getting width/height some other way.

    # Invert camera transformation
    cam = dataset.cameras()

    width = cam['frame'][0]['res_w']
    height = cam['frame'][0]['res_h']

    image_keypoints2d = image_coordinates(image_keypoints2d[..., :2], w=width, h=height)

    viz_camera = 0

    # If the ground truth is not available, take the camera extrinsic params from a random subject.
    # They are almost the same, and anyway, we only need this for visualization purposes.
    for subject in dataset.cameras():
        if 'orientation' in dataset.cameras()[subject][viz_camera]:
            rot = dataset.cameras()[subject][viz_camera]['orientation']
            break
    prediction = camera_to_world(prediction, R=rot, t=0)
    # We don't have the trajectory, but at least we can rebase the height
    prediction[:, :, 2] -= np.min(prediction[:, :, 2])

    # because algo was meant for a list of frames, we take the first frame (our only frame)
    prediction3d = prediction[0]

    return prediction3d, image_keypoints2d

    # do we want to visualize? this code used to write to json and create a video for visualization
    #if args.viz_output is not None:
    if True:

        anim_output = {'Reconstruction': prediction}

        # format the data in the same format as mediapipe, so we can load it in unity with the same script
        # we need a list (frames) of lists of 3d landmarks.
        unity_landmarks = prediction.tolist()

        # how to send data? or display it?
        # maybe draw it on the webcam feed....?!?!?!


        #with open(args.output_json, "w") as json_file:
        #    json.dump(unity_landmarks, json_file)

        #if args.rendervideo == "yes":
        #    from common.visualization import render_animation
        #    render_animation(input_keypoints, keypoints_metadata, anim_output,
        #                     dataset.skeleton(), dataset.fps(), args.viz_bitrate, cam['azimuth'], args.viz_output,
        #                     limit=args.viz_limit, downsample=args.viz_downsample, size=args.viz_size,
        #                     input_video_path=args.viz_video, viewport=(cam['res_w'], cam['res_h']),
        #                     input_video_skip=args.viz_skip)

    we_re_done_here = 1
Esempio n. 7
0
class Predictor:
    def __init__(self,
                 dataset_path,
                 checkpoint_path,
                 input_video_path=None,
                 export_path=None,
                 output_path=None,
                 with_cude=False):
        self.with_cuda = with_cude
        self.dataset_path = dataset_path
        self.export_path = export_path
        self.output_path = output_path
        self.input_video_path = input_video_path
        self.dataset = CustomDataset(self.dataset_path)
        self.keypoints = None
        self.keypoints_left = None
        self.keypoints_right = None
        self.joints_left = None
        self.joints_right = None
        self.checkpoint = torch.load(checkpoint_path,
                                     map_location=lambda storage, loc: storage)
        self.model = None
        self.init_keypoints()
        self.valid_poses = self.keypoints["detectron2"]["custom"]
        self.init_model()
        self.test_generator = None
        self.init_generator()
        self.prediction = None
        self.make_prediction()

    def export_prediction(self):
        if self.export_path is not None:
            np.save(self.export_path, self.prediction)

    def init_model(self):
        self.model = TemporalModel(self.valid_poses[0].shape[-2],
                                   self.valid_poses[0].shape[-1],
                                   self.dataset.skeleton().num_joints(),
                                   filter_widths=[3, 3, 3, 3, 3],
                                   causal=False,
                                   dropout=0.25,
                                   channels=1024,
                                   dense=False)
        self.model.load_state_dict(self.checkpoint['model_pos'])

    def init_keypoints(self):
        self.keypoints = np.load(self.dataset_path, allow_pickle=True)
        keypoints_metadata = self.keypoints['metadata'].item()
        keypoints_symmetry = keypoints_metadata['keypoints_symmetry']
        self.keypoints_left, self.keypoints_right = list(
            keypoints_symmetry[0]), list(keypoints_symmetry[1])
        self.joints_left, self.joints_right = list(
            self.dataset.skeleton().joints_left()), list(
                self.dataset.skeleton().joints_right())
        self.keypoints = self.keypoints['positions_2d'].item()

        for subject in self.keypoints.keys():
            for action in self.keypoints[subject]:
                for cam_idx, kps in enumerate(self.keypoints[subject][action]):
                    # Normalize camera frame
                    cam = self.dataset.cameras()[subject][cam_idx]
                    kps[..., :2] = normalize_screen_coordinates(kps[..., :2],
                                                                w=cam['res_w'],
                                                                h=cam['res_h'])
                    self.keypoints[subject][action][cam_idx] = kps

    def init_generator(self):
        receptive_field = self.model.receptive_field()
        pad = (receptive_field - 1) // 2
        causal_shift = 0
        self.test_generator = UnchunkedGenerator(
            None,
            None,
            self.valid_poses,
            pad=pad,
            causal_shift=causal_shift,
            augment=False,
            kps_left=self.keypoints_left,
            kps_right=self.keypoints_right,
            joints_left=self.joints_left,
            joints_right=self.joints_right)

    def make_prediction(self):
        if self.with_cuda:
            self.model = self.model.cuda()
        with torch.no_grad():
            self.model.eval()
            for _, batch, batch_2d in self.test_generator.next_epoch():
                inputs_2d = torch.from_numpy(batch_2d.astype('float32'))
                if self.with_cuda:
                    inputs_2d = inputs_2d.cuda()

            predicted_3d_pos = self.model(inputs_2d)

            if self.test_generator.augment_enabled():
                predicted_3d_pos[1, :, :, 0] *= -1
                predicted_3d_pos[1, :, self.joints_left +
                                 self.joints_right] = predicted_3d_pos[
                                     1, :,
                                     self.joints_right + self.joints_left]
                predicted_3d_pos = torch.mean(predicted_3d_pos,
                                              dim=0,
                                              keepdim=True)

            predicted_3d_pos = predicted_3d_pos.squeeze(0).cpu().numpy()
            rot = self.dataset.cameras()['detectron2'][0]['orientation']
            predicted_3d_pos = camera_to_world(predicted_3d_pos, R=rot, t=0)
            predicted_3d_pos[:, :, 2] -= np.min(predicted_3d_pos[:, :, 2])
            self.prediction = predicted_3d_pos

    def plot_pose(self, pose_index=0):
        pose = make_pose(self.prediction.tolist()[pose_index])
        pose.prepare_plot()
        pose.plot()
Esempio n. 8
0
def videpose_infer(args):
    from common.camera import normalize_screen_coordinates, camera_to_world, image_coordinates
    from common.generators import UnchunkedGenerator
    from common.model import TemporalModel
    from common.utils import Timer, evaluate, add_path
    from videopose import get_detector_2d, ckpt_time, metadata, time0

    import gene_npz

    gene_npz.args.outputpath = str(args.viz_output / "alpha_pose_kunkun_cut")
    print(gene_npz.args)
    # detector_2d = get_detector_2d(args.detector_2d)
    detector_2d = gene_npz.generate_kpts(args.detector_2d)

    assert detector_2d, 'detector_2d should be in ({alpha, hr, open}_pose)'

    # 2D kpts loads or generate
    if not args.input_npz:
        video_name = args.viz_video
        keypoints = detector_2d(video_name)
    else:
        npz = np.load(args.input_npz)
        keypoints = npz['kpts']  # (N, 17, 2)

    keypoints_symmetry = metadata['keypoints_symmetry']
    kps_left, kps_right = list(
        keypoints_symmetry[0]), list(keypoints_symmetry[1])
    joints_left, joints_right = list(
        [4, 5, 6, 11, 12, 13]), list([1, 2, 3, 14, 15, 16])

    # normlization keypoints  Suppose using the camera parameter
    keypoints = normalize_screen_coordinates(
        keypoints[..., :2], w=1000, h=1002)

    model_pos = TemporalModel(17, 2, 17, filter_widths=[3, 3, 3, 3, 3], causal=args.causal, dropout=args.dropout, channels=args.channels,
                              dense=args.dense)

    if torch.cuda.is_available():
        model_pos = model_pos.cuda()

    ckpt, time1 = ckpt_time(time0)
    print('-------------- load data spends {:.2f} seconds'.format(ckpt))

    # load trained model
    chk_filename = os.path.join(
        args.checkpoint, args.resume if args.resume else args.evaluate)
    print('Loading checkpoint', chk_filename)
    checkpoint = torch.load(
        chk_filename, map_location=lambda storage, loc: storage)  # 把loc映射到storage
    model_pos.load_state_dict(checkpoint['model_pos'])

    ckpt, time2 = ckpt_time(time1)
    print('-------------- load 3D model spends {:.2f} seconds'.format(ckpt))

    #  Receptive field: 243 frames for args.arc [3, 3, 3, 3, 3]
    receptive_field = model_pos.receptive_field()
    pad = (receptive_field - 1) // 2  # Padding on each side
    causal_shift = 0

    print('Rendering...')
    input_keypoints = keypoints.copy()
    gen = UnchunkedGenerator(None, None, [input_keypoints],
                             pad=pad, causal_shift=causal_shift, augment=args.test_time_augmentation,
                             kps_left=kps_left, kps_right=kps_right, joints_left=joints_left, joints_right=joints_right)
    prediction = evaluate(gen, model_pos, return_predictions=True)

    # save 3D joint points
    np.save(args.viz_output / "test_3d_output.npy",
            prediction, allow_pickle=True)

    rot = np.array([0.14070565, -0.15007018, -0.7552408,
                   0.62232804], dtype=np.float32)
    prediction = camera_to_world(prediction, R=rot, t=0)

    # We don't have the trajectory, but at least we can rebase the height
    prediction[:, :, 2] -= np.min(prediction[:, :, 2])
    anim_output = {'Reconstruction': prediction}
    input_keypoints = image_coordinates(
        input_keypoints[..., :2], w=1000, h=1002)

    ckpt, time3 = ckpt_time(time2)
    print(
        '-------------- generate reconstruction 3D data spends {:.2f} seconds'.format(ckpt))

    ckpt, time4 = ckpt_time(time3)
    print('total spend {:2f} second'.format(ckpt))
Esempio n. 9
0
def main(input_args):
    vp3d_dir = input_args.vp3d_dir
    sys.path.append(vp3d_dir)

    from common.camera import normalize_screen_coordinates
    from common.model import TemporalModel
    from common.generators import UnchunkedGenerator
    from common.arguments import parse_args

    args = parse_args()
    print(args)

    kps_left = [4, 5, 6, 11, 12, 13]
    kps_right = [1, 2, 3, 14, 15, 16]
    joints_left = [4, 5, 6, 11, 12, 13]
    joints_right = [1, 2, 3, 14, 15, 16]

    filter_widths = [int(x) for x in args.architecture.split(',')]

    num_joints_in = 17
    in_features = 2
    num_joints_out = 17
        
    model_pos = TemporalModel(num_joints_in, in_features, num_joints_out,
                                filter_widths=filter_widths, causal=args.causal, dropout=args.dropout, channels=args.channels,
                                dense=args.dense)

    receptive_field = model_pos.receptive_field()
    print('INFO: Receptive field: {} frames'.format(receptive_field))
    pad = (receptive_field - 1) // 2 # Padding on each side
    if args.causal:
        print('INFO: Using causal convolutions')
        causal_shift = pad
    else:
        causal_shift = 0

    model_params = 0
    for parameter in model_pos.parameters():
        model_params += parameter.numel()
    print('INFO: Trainable parameter count:', model_params)

    if torch.cuda.is_available():
        model_pos = model_pos.cuda()
        
    if args.resume or args.evaluate:
        chk_filename = os.path.join(vp3d_dir, args.checkpoint, args.resume if args.resume else args.evaluate)
        print('Loading checkpoint', chk_filename)
        checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage)
        print('This model was trained for {} epochs'.format(checkpoint['epoch']))
        model_pos.load_state_dict(checkpoint['model_pos'])

    # Evaluate
    def evaluate(test_generator, action=None, return_predictions=False):
        epoch_loss_3d_pos = 0
        epoch_loss_3d_pos_procrustes = 0
        epoch_loss_3d_pos_scale = 0
        epoch_loss_3d_vel = 0
        with torch.no_grad():
            model_pos.eval()
            N = 0
            for _, batch, batch_2d in test_generator.next_epoch():
                inputs_2d = torch.from_numpy(batch_2d.astype('float32'))
                if torch.cuda.is_available():
                    inputs_2d = inputs_2d.cuda()
                # Positional model
                predicted_3d_pos = model_pos(inputs_2d)

                # Test-time augmentation (if enabled)
                if test_generator.augment_enabled():
                    # Undo flipping and take average with non-flipped version
                    predicted_3d_pos[1, :, :, 0] *= -1
                    predicted_3d_pos[1, :, joints_left + joints_right] = predicted_3d_pos[1, :, joints_right + joints_left]
                    predicted_3d_pos = torch.mean(predicted_3d_pos, dim=0, keepdim=True)
                    
                if return_predictions:
                    return predicted_3d_pos.squeeze(0).cpu().numpy()
                    
                inputs_3d = torch.from_numpy(batch.astype('float32'))
                if torch.cuda.is_available():
                    inputs_3d = inputs_3d.cuda()
                inputs_3d[:, :, 0] = 0    
                if test_generator.augment_enabled():
                    inputs_3d = inputs_3d[:1]

                error = mpjpe(predicted_3d_pos, inputs_3d)
                epoch_loss_3d_pos_scale += inputs_3d.shape[0]*inputs_3d.shape[1] * n_mpjpe(predicted_3d_pos, inputs_3d).item()

                epoch_loss_3d_pos += inputs_3d.shape[0]*inputs_3d.shape[1] * error.item()
                N += inputs_3d.shape[0] * inputs_3d.shape[1]
                
                inputs = inputs_3d.cpu().numpy().reshape(-1, inputs_3d.shape[-2], inputs_3d.shape[-1])
                predicted_3d_pos = predicted_3d_pos.cpu().numpy().reshape(-1, inputs_3d.shape[-2], inputs_3d.shape[-1])

                epoch_loss_3d_pos_procrustes += inputs_3d.shape[0]*inputs_3d.shape[1] * p_mpjpe(predicted_3d_pos, inputs)

                # Compute velocity error
                epoch_loss_3d_vel += inputs_3d.shape[0]*inputs_3d.shape[1] * mean_velocity_error(predicted_3d_pos, inputs)
                
        if action is None:
            print('----------')
        else:
            print('----'+action+'----')
        e1 = (epoch_loss_3d_pos / N)*1000
        e2 = (epoch_loss_3d_pos_procrustes / N)*1000
        e3 = (epoch_loss_3d_pos_scale / N)*1000
        ev = (epoch_loss_3d_vel / N)*1000
        print('Test time augmentation:', test_generator.augment_enabled())
        print('Protocol #1 Error (MPJPE):', e1, 'mm')
        print('Protocol #2 Error (P-MPJPE):', e2, 'mm')
        print('Protocol #3 Error (N-MPJPE):', e3, 'mm')
        print('Velocity Error (MPJVE):', ev, 'mm')
        print('----------')

        return e1, e2, e3, ev

    def get_gt_dirs(input_path, camera_id='dev3'):
        """Get all directories with ground-truth 2D human pose annotations
        """
        gt_path_list = []
        category_path_list = get_subdirs(input_path)
        for category in category_path_list:
            if os.path.basename(category) != 'Calibration':
                category_scans = get_subdirs(category)
                for category_scan in category_scans:
                    device_list = get_subdirs(category_scan)
                    for device_path in device_list:
                        if camera_id in device_path:
                            if os.path.exists(os.path.join(device_path, 'pose2d')): # 2D annotations exist
                                gt_path_list.append(device_path) # eg <root>/Lack_TV_Bench/0007_white_floor_08_04_2019_08_28_10_47/dev3
        return gt_path_list

    def get_subdirs(input_path):
        '''
        get a list of subdirectories in input_path directory
        :param input_path: parent directory (in which to get the subdirectories)
        :return:
        subdirs: list of subdirectories in input_path
        '''
        subdirs = [os.path.join(input_path, dir_i) for dir_i in os.listdir(input_path)
                   if os.path.isdir(os.path.join(input_path, dir_i))]
        subdirs.sort()
        return subdirs

    fps = 30
    frame_width = 1920.0
    frame_height = 1080.0

    h36m_joint_names = get_h36m_joint_names()
    h36m_joint_names_dict = {name: i for i, name in enumerate(h36m_joint_names)}
    joint_names = get_body25_joint_names()
    joint_names_dict = {name: i for i, name in enumerate(joint_names)}

    dataset_dir = input_args.dataset_dir
    camera_id = input_args.camera_id

    gt_dirs = get_gt_dirs(dataset_dir, camera_id)
    for i, gt_dir in enumerate(gt_dirs):
        print(f"\nProcessing {i} of {len(gt_dirs)}: {' '.join(gt_dir.split('/')[-3:-1])}")
        
        input_dir = os.path.join(gt_dir, 'predictions', 'pose2d', 'openpose')
        output_dir = os.path.join(gt_dir, 'predictions', 'pose3d', 'vp3d')
        os.makedirs(output_dir, exist_ok=True)

        json_mask = os.path.join(input_dir, 'scan_video_00000000????_keypoints.json')
        json_files = sorted(glob(json_mask))
        input_keypoints = []
        for json_file in json_files:
            with open(json_file, 'r') as f:
                pose2d = json.load(f)
            if len(pose2d["people"]) == 0:
                keypoints_op = np.zeros((19, 3))
            else:
                keypoints_op = np.array(pose2d["people"][0]["pose_keypoints_2d"]).reshape(-1, 3) # Takes first detected person every time...
            keypoints = np.zeros((17, 3))
            for i, joint_name in enumerate(h36m_joint_names):
                if joint_name == 'spine' or joint_name == 'head':
                    continue
                joint_id = joint_names_dict[joint_name]
                keypoints[i, :] = keypoints_op[joint_id, :]
            keypoints[h36m_joint_names_dict['mid hip'], :] = np.mean((keypoints[h36m_joint_names_dict['left hip'], :], keypoints[h36m_joint_names_dict['right hip'], :]), axis=0) # mid hip = mean(left hip, right hip)
            keypoints[h36m_joint_names_dict['spine'], :] = np.mean((keypoints[h36m_joint_names_dict['neck'], :], keypoints[h36m_joint_names_dict['mid hip'], :]), axis=0) # spine = mean(neck, mid hip)
            keypoints[h36m_joint_names_dict['head'], :] = np.mean((keypoints_op[joint_names_dict['left ear'], :], keypoints_op[joint_names_dict['right ear'], :]), axis=0) # head = mean(left ear, right ear)
            input_keypoints.append(keypoints)
        input_keypoints = np.array(input_keypoints)

        input_keypoints = input_keypoints[:, :, :2] # For pretrained_h36m_cpn.bin and cpn_ft_h36m_dbb

        input_keypoints[..., :2] = normalize_screen_coordinates(input_keypoints[..., :2], w=frame_width, h=frame_height)

        args.test_time_augmentation=True
        gen = UnchunkedGenerator(None, None, [input_keypoints],
                                 pad=pad, causal_shift=causal_shift, augment=args.test_time_augmentation,
                                 kps_left=kps_left, kps_right=kps_right, joints_left=joints_left, joints_right=joints_right)
        prediction = evaluate(gen, return_predictions=True) # Nx17x3

        pickle.dump(prediction, open(os.path.join(output_dir, 'vp3d_output.pkl'), "wb"))