Esempio n. 1
0
  def testBuildAndCheckAllEndPointsUptoMixed5c(self):
    batch_size = 5
    num_frames = 64
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, num_frames, height, width, 3))
    _, end_points = i3d.i3d_base(inputs,
                                 final_endpoint='Mixed_5c')
    endpoints_shapes = {'Conv2d_1a_7x7': [5, 32, 112, 112, 64],
                        'MaxPool_2a_3x3': [5, 32, 56, 56, 64],
                        'Conv2d_2b_1x1': [5, 32, 56, 56, 64],
                        'Conv2d_2c_3x3': [5, 32, 56, 56, 192],
                        'MaxPool_3a_3x3': [5, 32, 28, 28, 192],
                        'Mixed_3b': [5, 32, 28, 28, 256],
                        'Mixed_3c': [5, 32, 28, 28, 480],
                        'MaxPool_4a_3x3': [5, 16, 14, 14, 480],
                        'Mixed_4b': [5, 16, 14, 14, 512],
                        'Mixed_4c': [5, 16, 14, 14, 512],
                        'Mixed_4d': [5, 16, 14, 14, 512],
                        'Mixed_4e': [5, 16, 14, 14, 528],
                        'Mixed_4f': [5, 16, 14, 14, 832],
                        'MaxPool_5a_2x2': [5, 8, 7, 7, 832],
                        'Mixed_5b': [5, 8, 7, 7, 832],
                        'Mixed_5c': [5, 8, 7, 7, 1024]}

    self.assertItemsEqual(list(endpoints_shapes.keys()), list(end_points.keys()))
    for endpoint_name, expected_shape in endpoints_shapes.items():
      self.assertTrue(endpoint_name in end_points)
      self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                           expected_shape)
Esempio n. 2
0
  def testTenFrames(self):
    batch_size = 5
    num_frames = 10
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, num_frames, height, width, 3))
    mixed_5c, _ = i3d.i3d_base(inputs)
    self.assertTrue(mixed_5c.op.name.startswith('InceptionV1/Mixed_5c'))
    self.assertListEqual(mixed_5c.get_shape().as_list(),
                         [batch_size, 2, 7, 7, 1024])
Esempio n. 3
0
  def testHalfSizeImages(self):
    batch_size = 5
    num_frames = 64
    height, width = 112, 112

    inputs = tf.random_uniform((batch_size, num_frames, height, width, 3))
    mixed_5c, _ = i3d.i3d_base(inputs)
    self.assertTrue(mixed_5c.op.name.startswith('InceptionV1/Mixed_5c'))
    self.assertListEqual(mixed_5c.get_shape().as_list(),
                         [batch_size, 8, 4, 4, 1024])
Esempio n. 4
0
  def testBuildBaseNetwork(self):
    batch_size = 5
    num_frames = 64
    height, width = 224, 224

    inputs = tf.random_uniform((batch_size, num_frames, height, width, 3))
    mixed_6c, end_points = i3d.i3d_base(inputs)
    self.assertTrue(mixed_6c.op.name.startswith('InceptionV1/Mixed_5c'))
    self.assertListEqual(mixed_6c.get_shape().as_list(),
                         [batch_size, 8, 7, 7, 1024])
    expected_endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                          'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b',
                          'Mixed_3c', 'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c',
                          'Mixed_4d', 'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2',
                          'Mixed_5b', 'Mixed_5c']
    self.assertItemsEqual(list(end_points.keys()), expected_endpoints)
Esempio n. 5
0
 def testBuildOnlyUptoFinalEndpoint(self):
   batch_size = 5
   num_frames = 64
   height, width = 224, 224
   endpoints = ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
                'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
                'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d',
                'Mixed_4e', 'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b',
                'Mixed_5c']
   for index, endpoint in enumerate(endpoints):
     with tf.Graph().as_default():
       inputs = tf.random_uniform((batch_size, num_frames, height, width, 3))
       out_tensor, end_points = i3d.i3d_base(
           inputs, final_endpoint=endpoint)
       self.assertTrue(out_tensor.op.name.startswith(
           'InceptionV1/' + endpoint))
       self.assertItemsEqual(endpoints[:index+1], end_points)