Esempio n. 1
0
    def __init__(self, size, alpha):
        """Create Prioritized Replay buffer.

        Parameters
        ----------
        size: int
            Max number of transitions to store in the buffer. When the buffer
            overflows the old memories are dropped.
        alpha: float
            how much prioritization is used
            (0 - no prioritization, 1 - full prioritization)

        See Also
        --------
        ReplayBuffer.__init__
        """
        super(PrioritizedReplayBuffer, self).__init__(size)
        assert alpha >= 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < size:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0
Esempio n. 2
0
    def __init__(self, size, alpha):
        super(PrioritizedReplayBuffer, self).__init__(size)
        assert alpha >= 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < size:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0
Esempio n. 3
0
class PrioritizedReplayBuffer(ReplayBuffer):
    def __init__(self, size, alpha):
        super(PrioritizedReplayBuffer, self).__init__(size)
        assert alpha >= 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < size:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0

    def add(self, *args, **kwargs):
        """See ReplayBuffer.store_effect"""
        idx = self._next_idx
        super().add(*args, **kwargs)
        self._it_sum[idx] = self._max_priority**self._alpha
        self._it_min[idx] = self._max_priority**self._alpha

    def _sample_proportional(self, batch_size):
        res = []
        p_total = self._it_sum.sum(0, len(self._storage) - 1)
        every_range_len = p_total / batch_size
        for i in range(batch_size):
            mass = random.random() * every_range_len + i * every_range_len
            idx = self._it_sum.find_prefixsum_idx(mass)
            res.append(idx)
        return res

    def sample(self, batch_size, beta):
        assert beta > 0

        idxes = self._sample_proportional(batch_size)

        weights = []
        p_min = self._it_min.min() / self._it_sum.sum()
        max_weight = (p_min * len(self._storage))**(-beta)

        for idx in idxes:
            p_sample = self._it_sum[idx] / self._it_sum.sum()
            weight = (p_sample * len(self._storage))**(-beta)
            weights.append(weight / max_weight)
        weights = np.array([weights], dtype=np.float32)
        encoded_sample = self._encode_sample(idxes)
        return tuple(list(encoded_sample) + [weights, idxes])

    def update_priorities(self, idxes, priorities):
        assert len(idxes) == len(priorities)
        for idx, priority in zip(idxes, priorities):
            assert priority > 0
            assert 0 <= idx < len(self._storage)
            self._it_sum[idx] = priority**self._alpha
            self._it_min[idx] = priority**self._alpha

            self._max_priority = max(self._max_priority, priority)
Esempio n. 4
0
    def __init__(
        self, 
        obs_dim: int,
        size: int, 
        batch_size: int = 32, 
        alpha: float = 0.6
    ):
        """Initialization."""
        assert alpha >= 0
        
        super(PrioritizedReplayBuffer, self).__init__(obs_dim, size, batch_size)
        self.max_priority, self.tree_ptr = 1.0, 0
        self.alpha = alpha
        
        # capacity must be positive and a power of 2.
        tree_capacity = 1
        while tree_capacity < self.max_size:
            tree_capacity *= 2

        self.sum_tree = SumSegmentTree(tree_capacity)
        self.min_tree = MinSegmentTree(tree_capacity)
Esempio n. 5
0
class PrioritizedReplayBuffer(ReplayBuffer):
    def __init__(self, size, alpha):
        """Create Prioritized Replay buffer.

        Parameters
        ----------
        size: int
            Max number of transitions to store in the buffer. When the buffer
            overflows the old memories are dropped.
        alpha: float
            how much prioritization is used
            (0 - no prioritization, 1 - full prioritization)

        See Also
        --------
        ReplayBuffer.__init__
        """
        super(PrioritizedReplayBuffer, self).__init__(size)
        assert alpha >= 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < size:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0

    def add(self, *args, **kwargs):
        """See ReplayBuffer.store_effect"""
        idx = self._next_idx
        super().add(*args, **kwargs)
        self._it_sum[idx] = self._max_priority**self._alpha
        self._it_min[idx] = self._max_priority**self._alpha

    def _sample_proportional(self, batch_size):
        res = []
        p_total = self._it_sum.sum(0, len(self._storage) - 1)
        every_range_len = p_total / batch_size
        for i in range(batch_size):
            mass = random.random() * every_range_len + i * every_range_len
            idx = self._it_sum.find_prefixsum_idx(mass)
            res.append(idx)
        return res

    def sample(self, batch_size, beta):
        """Sample a batch of experiences.

        compared to ReplayBuffer.sample
        it also returns importance weights and idxes
        of sampled experiences.


        Parameters
        ----------
        batch_size: int
            How many transitions to sample.
        beta: float
            To what degree to use importance weights
            (0 - no corrections, 1 - full correction)

        Returns
        -------
        obs_batch: np.array
            batch of observations
        act_batch: np.array
            batch of actions executed given obs_batch
        rew_batch: np.array
            rewards received as results of executing act_batch
        next_obs_batch: np.array
            next set of observations seen after executing act_batch
        done_mask: np.array
            done_mask[i] = 1 if executing act_batch[i] resulted in
            the end of an episode and 0 otherwise.
        weights: np.array
            Array of shape (batch_size,) and dtype np.float32
            denoting importance weight of each sampled transition
        idxes: np.array
            Array of shape (batch_size,) and dtype np.int32
            idexes in buffer of sampled experiences
        """
        assert beta > 0

        idxes = self._sample_proportional(batch_size)

        weights = []
        p_min = self._it_min.min() / self._it_sum.sum()
        max_weight = (p_min * len(self._storage))**(-beta)

        for idx in idxes:
            p_sample = self._it_sum[idx] / self._it_sum.sum()
            weight = (p_sample * len(self._storage))**(-beta)
            weights.append(weight / max_weight)
        weights = np.array(weights, dtype=np.float32)
        encoded_sample = self._encode_sample(idxes)
        return tuple(list(encoded_sample) + [weights, idxes])

    def update_priorities(self, idxes, priorities):
        """Update priorities of sampled transitions.

        sets priority of transition at index idxes[i] in buffer
        to priorities[i].

        Parameters
        ----------
        idxes: [int]
            List of idxes of sampled transitions
        priorities: [float]
            List of updated priorities corresponding to
            transitions at the sampled idxes denoted by
            variable `idxes`.
        """
        assert len(idxes) == len(priorities)
        for idx, priority in zip(idxes, priorities):
            assert priority > 0
            assert 0 <= idx < len(self._storage)
            self._it_sum[idx] = priority**self._alpha
            self._it_min[idx] = priority**self._alpha

            self._max_priority = max(self._max_priority, priority)
class PrioritizedReplayBuffer(ReplayBuffer):
    def __init__(self, size, alpha):
        """
        Create Prioritized Replay buffer.

        See Also ReplayBuffer.__init__

        :param size: (int) Max number of transitions to store in the buffer. When the buffer overflows the old memories
            are dropped.
        :param alpha: (float) how much prioritization is used (0 - no prioritization, 1 - full prioritization)
        """
        super(PrioritizedReplayBuffer, self).__init__(size)
        assert alpha >= 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < size:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0

    def add(self, obs_t, action, reward, obs_tp1, done):
        """
        add a new transition to the buffer

        :param obs_t: (Any) the last observation
        :param action: ([float]) the action
        :param reward: (float) the reward of the transition
        :param obs_tp1: (Any) the current observation
        :param done: (bool) is the episode done
        """
        idx = self._next_idx
        super().add(obs_t, action, reward, obs_tp1, done)
        self._it_sum[idx] = self._max_priority ** self._alpha
        self._it_min[idx] = self._max_priority ** self._alpha

    def _sample_proportional(self, batch_size):
        res = []
        for _ in range(batch_size):
            # TODO(szymon): should we ensure no repeats?
            mass = random.random() * self._it_sum.sum(0, len(self._storage) - 1)
            idx = self._it_sum.find_prefixsum_idx(mass)
            res.append(idx)
        return res

    def sample(self, batch_size, beta=0):
        """
        Sample a batch of experiences.

        compared to ReplayBuffer.sample
        it also returns importance weights and idxes
        of sampled experiences.

        :param batch_size: (int) How many transitions to sample.
        :param beta: (float) To what degree to use importance weights (0 - no corrections, 1 - full correction)
        :return:
            - obs_batch: (np.ndarray) batch of observations
            - act_batch: (numpy float) batch of actions executed given obs_batch
            - rew_batch: (numpy float) rewards received as results of executing act_batch
            - next_obs_batch: (np.ndarray) next set of observations seen after executing act_batch
            - done_mask: (numpy bool) done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode
                and 0 otherwise.
            - weights: (numpy float) Array of shape (batch_size,) and dtype np.float32 denoting importance weight of
                each sampled transition
            - idxes: (numpy int) Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences
        """
        assert beta > 0

        idxes = self._sample_proportional(batch_size)

        weights = []
        p_min = self._it_min.min() / self._it_sum.sum()
        max_weight = (p_min * len(self._storage)) ** (-beta)

        for idx in idxes:
            p_sample = self._it_sum[idx] / self._it_sum.sum()
            weight = (p_sample * len(self._storage)) ** (-beta)
            weights.append(weight / max_weight)
        weights = np.array(weights)
        encoded_sample = self._encode_sample(idxes)
        return tuple(list(encoded_sample) + [weights, idxes])

    def update_priorities(self, idxes, priorities):
        """
        Update priorities of sampled transitions.

        sets priority of transition at index idxes[i] in buffer
        to priorities[i].

        :param idxes: ([int]) List of idxes of sampled transitions
        :param priorities: ([float]) List of updated priorities corresponding to transitions at the sampled idxes
            denoted by variable `idxes`.
        """
        assert len(idxes) == len(priorities)
        for idx, priority in zip(idxes, priorities):
            assert priority > 0
            assert 0 <= idx < len(self._storage)
            self._it_sum[idx] = priority ** self._alpha
            self._it_min[idx] = priority ** self._alpha

            self._max_priority = max(self._max_priority, priority)
Esempio n. 7
0
File: dqn.py Progetto: saswat0/peely
class PrioritizedReplayBuffer(ReplayBuffer):
    def __init__(self, capacity, alpha):
        """Create Prioritized Replay buffer.
        Parameters
        ----------
        capacity: int
            Max number of transitions to store in the buffer. When the buffer
            overflows the old memories are dropped.
        alpha: float
            how much prioritization is used
            (0 - no prioritization, 1 - full prioritization)
        See Also
        --------
        ReplayBuffer.__init__
        """
        super(PrioritizedReplayBuffer, self).__init__(capacity)
        assert alpha >= 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < capacity:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0

    def push(self, *args, **kwargs):
        idx = self._position
        super().push(*args, **kwargs)
        self._it_sum[idx] = self._max_priority**self._alpha
        self._it_min[idx] = self._max_priority**self._alpha

    def _sample_proportional(self, batch_size):
        res = []
        p_total = self._it_sum.sum(0, len(self) - 1)
        every_range_len = p_total / batch_size
        for i in range(batch_size):
            mass = random.random() * every_range_len + i * every_range_len
            idx = self._it_sum.find_prefixsum_idx(mass)
            res.append(idx)
        return res

    def sample(self, batch_size, beta):
        """Sample a batch of experiences.
        compared to ReplayBuffer.sample
        it also returns importance weights and idxes
        of sampled experiences.
        Parameters
        ----------
        batch_size: int
            How many transitions to sample.
        beta: float
            To what degree to use importance weights
            (0 - no corrections, 1 - full correction)
        Returns
        -------
        transitions: [Transition]
            batch of transitions 
        weights: np.array
            Array of shape (batch_size,) and dtype np.float32
            denoting importance weight of each sampled transition
        idxes: np.array
            Array of shape (batch_size,) and dtype np.int32
            idexes in buffer of sampled experiences
        """
        assert beta > 0

        idxes = self._sample_proportional(batch_size)

        weights = []
        p_min = self._it_min.min() / self._it_sum.sum()
        max_weight = (p_min * len(self))**(-beta)

        for idx in idxes:
            p_sample = self._it_sum[idx] / self._it_sum.sum()
            weight = (p_sample * len(self))**(-beta)
            weights.append(weight / max_weight)
        weights = np.array(weights)
        transitions = self._retrieve_sample(idxes)
        return transitions, (weights, idxes)

    def update_priorities(self, idxes, priorities):
        """Update priorities of sampled transitions.
        sets priority of transition at index idxes[i] in buffer
        to priorities[i].
        Parameters
        ----------
        idxes: [int]
            List of idxes of sampled transitions
        priorities: [float]
            List of updated priorities corresponding to
            transitions at the sampled idxes denoted by
            variable `idxes`.
        """
        assert len(idxes) == len(priorities)
        for idx, priority in zip(idxes, priorities):
            assert priority > 0
            assert 0 <= idx < len(self)
            self._it_sum[idx] = priority**self._alpha
            self._it_min[idx] = priority**self._alpha

            self._max_priority = max(self._max_priority, priority)
Esempio n. 8
0
class PrioritizedReplayBuffer(ReplayBuffer):
    """Prioritized Replay buffer.
    
    Attributes:
        max_priority (float): max priority
        tree_ptr (int): next index of tree
        alpha (float): alpha parameter for prioritized replay buffer
        sum_tree (SumSegmentTree): sum tree for prior
        min_tree (MinSegmentTree): min tree for min prior to get max weight
        
    """
    def __init__(
        self, 
        obs_dim: int,
        size: int, 
        batch_size: int = 32, 
        alpha: float = 0.6
    ):
        """Initialization."""
        assert alpha >= 0
        
        super(PrioritizedReplayBuffer, self).__init__(obs_dim, size, batch_size)
        self.max_priority, self.tree_ptr = 1.0, 0
        self.alpha = alpha
        
        # capacity must be positive and a power of 2.
        tree_capacity = 1
        while tree_capacity < self.max_size:
            tree_capacity *= 2

        self.sum_tree = SumSegmentTree(tree_capacity)
        self.min_tree = MinSegmentTree(tree_capacity)
        
    def store(
        self, 
        obs: np.ndarray, 
        act: int, 
        rew: float, 
        next_obs: np.ndarray, 
        done: bool
    ):
        """Store experience and priority."""
        super().store(obs, act, rew, next_obs, done)
        
        self.sum_tree[self.tree_ptr] = self.max_priority ** self.alpha
        self.min_tree[self.tree_ptr] = self.max_priority ** self.alpha
        self.tree_ptr = (self.tree_ptr + 1) % self.max_size

    def sample_batch(self, beta: float = 0.4) -> Dict[str, np.ndarray]:
        """Sample a batch of experiences."""
        assert len(self) >= self.batch_size
        assert beta > 0
        
        indices = self._sample_proportional()
        
        obs = self.obs_buf[indices]
        next_obs = self.next_obs_buf[indices]
        acts = self.acts_buf[indices]
        rews = self.rews_buf[indices]
        done = self.done_buf[indices]
        weights = np.array([self._calculate_weight(i, beta) for i in indices])
        
        return dict(
            obs=obs,
            next_obs=next_obs,
            acts=acts,
            rews=rews,
            done=done,
            weights=weights,
            indices=indices,
        )
        
    def update_priorities(self, indices: List[int], priorities: np.ndarray):
        """Update priorities of sampled transitions."""
        assert len(indices) == len(priorities)

        for idx, priority in zip(indices, priorities):
            assert priority > 0
            assert 0 <= idx < len(self)

            self.sum_tree[idx] = priority ** self.alpha
            self.min_tree[idx] = priority ** self.alpha

            self.max_priority = max(self.max_priority, priority)
            
    def _sample_proportional(self) -> List[int]:
        """Sample indices based on proportions."""
        indices = []
        p_total = self.sum_tree.sum(0, len(self) - 1)
        segment = p_total / self.batch_size
        
        for i in range(self.batch_size):
            a = segment * i
            b = segment * (i + 1)
            upperbound = random.uniform(a, b)
            idx = self.sum_tree.retrieve(upperbound)
            indices.append(idx)
            
        return indices
    
    def _calculate_weight(self, idx: int, beta: float):
        """Calculate the weight of the experience at idx."""
        # get max weight
        p_min = self.min_tree.min() / self.sum_tree.sum()
        max_weight = (p_min * len(self)) ** (-beta)
        
        # calculate weights
        p_sample = self.sum_tree[idx] / self.sum_tree.sum()
        weight = (p_sample * len(self)) ** (-beta)
        weight = weight / max_weight
        
        return weight
def test_max_interval_tree():
    tree = MinSegmentTree(4)

    tree[0] = 1.0
    tree[2] = 0.5
    tree[3] = 3.0

    assert np.isclose(tree.min(), 0.5)
    assert np.isclose(tree.min(0, 2), 1.0)
    assert np.isclose(tree.min(0, 3), 0.5)
    assert np.isclose(tree.min(0, -1), 0.5)
    assert np.isclose(tree.min(2, 4), 0.5)
    assert np.isclose(tree.min(3, 4), 3.0)

    tree[2] = 0.7

    assert np.isclose(tree.min(), 0.7)
    assert np.isclose(tree.min(0, 2), 1.0)
    assert np.isclose(tree.min(0, 3), 0.7)
    assert np.isclose(tree.min(0, -1), 0.7)
    assert np.isclose(tree.min(2, 4), 0.7)
    assert np.isclose(tree.min(3, 4), 3.0)

    tree[2] = 4.0

    assert np.isclose(tree.min(), 1.0)
    assert np.isclose(tree.min(0, 2), 1.0)
    assert np.isclose(tree.min(0, 3), 1.0)
    assert np.isclose(tree.min(0, -1), 1.0)
    assert np.isclose(tree.min(2, 4), 3.0)
    assert np.isclose(tree.min(2, 3), 4.0)
    assert np.isclose(tree.min(2, -1), 4.0)
    assert np.isclose(tree.min(3, 4), 3.0)
Esempio n. 10
0
class PrioritizedReplayBuffer(ReplayBuffer):
    def __init__(self, size, alpha):
        """
        Create Prioritized Replay buffer.

        See Also ReplayBuffer.__init__

        :param size: (int) Max number of transitions to store in the buffer. When the buffer overflows the old memories
            are dropped.
        :param alpha: (float) how much prioritization is used (0 - no prioritization, 1 - full prioritization)
        """
        super(PrioritizedReplayBuffer, self).__init__(size)
        assert alpha >= 0
        self._alpha = alpha

        it_capacity = 1
        while it_capacity < size:
            it_capacity *= 2

        self._it_sum = SumSegmentTree(it_capacity)
        self._it_min = MinSegmentTree(it_capacity)
        self._max_priority = 1.0

    def add(self, obs_t, action, reward, obs_tp1, done):
        """
        add a new transition to the buffer

        :param obs_t: (Any) the last observation
        :param action: ([float]) the action
        :param reward: (float) the reward of the transition
        :param obs_tp1: (Any) the current observation
        :param done: (bool) is the episode done
        """
        idx = self._next_idx
        super().add(obs_t, action, reward, obs_tp1, done)
        self._it_sum[idx] = self._max_priority ** self._alpha
        self._it_min[idx] = self._max_priority ** self._alpha

    def extend(self, obs_t, action, reward, obs_tp1, done):
        """
        add a new batch of transitions to the buffer

        :param obs_t: (Union[Tuple[Union[np.ndarray, int]], np.ndarray]) the last batch of observations
        :param action: (Union[Tuple[Union[np.ndarray, int]]], np.ndarray]) the batch of actions
        :param reward: (Union[Tuple[float], np.ndarray]) the batch of the rewards of the transition
        :param obs_tp1: (Union[Tuple[Union[np.ndarray, int]], np.ndarray]) the current batch of observations
        :param done: (Union[Tuple[bool], np.ndarray]) terminal status of the batch

        Note: uses the same names as .add to keep compatibility with named argument passing
            but expects iterables and arrays with more than 1 dimensions
        """
        idx = self._next_idx
        super().extend(obs_t, action, reward, obs_tp1, done)
        while idx != self._next_idx:
            self._it_sum[idx] = self._max_priority ** self._alpha
            self._it_min[idx] = self._max_priority ** self._alpha
            idx = (idx + 1) % self._maxsize

    def _sample_proportional(self, batch_size):
        mass = []
        total = self._it_sum.sum(0, len(self._storage) - 1)
        # TODO(szymon): should we ensure no repeats?
        mass = np.random.random(size=batch_size) * total
        idx = self._it_sum.find_prefixsum_idx(mass)
        return idx

    def sample(self, batch_size: int, beta: float = 0, env: Optional[VecNormalize] = None):
        """
        Sample a batch of experiences.

        compared to ReplayBuffer.sample
        it also returns importance weights and idxes
        of sampled experiences.

        :param batch_size: (int) How many transitions to sample.
        :param beta: (float) To what degree to use importance weights (0 - no corrections, 1 - full correction)
        :param env: (Optional[VecNormalize]) associated gym VecEnv
            to normalize the observations/rewards when sampling
        :return:
            - obs_batch: (np.ndarray) batch of observations
            - act_batch: (numpy float) batch of actions executed given obs_batch
            - rew_batch: (numpy float) rewards received as results of executing act_batch
            - next_obs_batch: (np.ndarray) next set of observations seen after executing act_batch
            - done_mask: (numpy bool) done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode
                and 0 otherwise.
            - weights: (numpy float) Array of shape (batch_size,) and dtype np.float32 denoting importance weight of
                each sampled transition
            - idxes: (numpy int) Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences
        """
        assert beta > 0

        idxes = self._sample_proportional(batch_size)
        weights = []
        p_min = self._it_min.min() / self._it_sum.sum()
        max_weight = (p_min * len(self._storage)) ** (-beta)
        p_sample = self._it_sum[idxes] / self._it_sum.sum()
        weights = (p_sample * len(self._storage)) ** (-beta) / max_weight
        encoded_sample = self._encode_sample(idxes, env=env)
        return tuple(list(encoded_sample) + [weights, idxes])

    def update_priorities(self, idxes, priorities):
        """
        Update priorities of sampled transitions.

        sets priority of transition at index idxes[i] in buffer
        to priorities[i].

        :param idxes: ([int]) List of idxes of sampled transitions
        :param priorities: ([float]) List of updated priorities corresponding to transitions at the sampled idxes
            denoted by variable `idxes`.
        """
        assert len(idxes) == len(priorities)
        assert np.min(priorities) > 0
        assert np.min(idxes) >= 0
        assert np.max(idxes) < len(self.storage)
        self._it_sum[idxes] = priorities ** self._alpha
        self._it_min[idxes] = priorities ** self._alpha

        self._max_priority = max(self._max_priority, np.max(priorities))