Esempio n. 1
0
 def jieba_initialize(self):
     #结巴可以添加两个词典,是add过程
     log_exp.debug('initialize jieba vocab...')
     jieba.load_userdict(project_path() + '/resource/segDic/others.txt')
     jieba.load_userdict(project_path() +
                         '/resource/segDic/THUOCL_caijing.txt')
     # jieba.load_userdict(utils.project_path() + '/resource/segDic/vocab.txt') # 当前词典很多和其他词典覆盖的地方,不能直接用
     self.stopwords = {
         line.strip()
         for line in open(
             project_path() +
             '/resource/segDic/stop_words.txt', 'r').readlines()
     }
     jieba.initialize()
Esempio n. 2
0
def get_data(data_name='bitfinex_dataETHUSD.h5',rule_type = '15T'):
    '''
    读取数据
    :return:
    '''
    # 导入数据
    all_data = pd.read_hdf(utils.project_path()+'/data/'+data_name, key='data')
    # 转换数据周期
    all_data = evaluate.transfer_to_period_data(all_data, rule_type)
    # 选取时间段
    all_data = all_data[all_data['candle_begin_time'] >= pd.to_datetime('2018-11-01')]
    all_data.reset_index(inplace=True, drop=True)
    return all_data
Esempio n. 3
0
def write_2_file_hdf5(kData,path='/result/default.h5'):
    '''
    读写h5文件
    :param kData:df
    :param path:
    :param is_read:
    :return:
    '''
    path_t = utils.project_path()+path
    # HDF5的写入:
    # 压缩格式存储
    h5 = pd.HDFStore(path_t, 'w', complevel=4, complib='blosc')
    h5['data'] = kData
    h5.close()
    utils.log_exp.info('写入完成')
Esempio n. 4
0
                log_exp.debug('持多仓信号为%d,当前信号为%d, 继续做多!', state[1], flag)

        elif state[1] == -2:  # 迁移状态为-2
            if flag == 0 or flag == 1 or flag == -2:
                # ===止损:涨幅达到一定量就平
                if ((df_copy.loc[index, 'close'] -
                     df_copy.loc[state[0], 'close']) /
                        df_copy.loc[state[0], 'close']) > self.th4:
                    df_sell.loc[index, 'signal_sell'] = -20
                    state = (0, 0, -20)  # 平仓掉了之前的状态
                else:  # 智能止盈,由下往上穿越中线并达到波动量则平仓
                    if (df_copy.loc[index, 'bbPb'] <=
                            0.5) and (df_copy.loc[index - 1, 'bbPb'] > 0.5):
                        df_sell.loc[index, 'signal_sell'] = -20
                        state = (0, 0, -20)  # 平仓掉了之前的状态
            elif flag == 2 or flag == -1:  # 【穿越下线的两种形态】
                log_exp.debug('持空仓信号为%d,当前信号为%d, 继续做空!', state[1], flag)
            pass

        return state


if __name__ == '__main__':
    para_now = [90, 3.2, 0.04, 0.05, 1.4, 0.15]
    data = pd.read_excel(utils.project_path() + '/excel_output.xls',
                         sheet_name='src')
    # 计算交易信号
    ins = BollingAdvanced()
    df = ins.signal_bolling(data, para=para_now)
    pass
Esempio n. 5
0
 def __init__(self, db_file):
     """
     :param db: 数据库文件链接, 默认 在datacache文件夹下
     """
     self.db = project_path() + '/datacache/' + db_file
Esempio n. 6
0
import pandas as pd
from common import utils

if __name__ == '__main__':
    all_data = pd.read_hdf(utils.project_path() +
                           '/data/next/bitfinex_dataXRPUSD.h5')
    #temp_data = pd.read_hdf(utils.project_path()+'/data/bitfinex_dataETH.h5')
    all_data.rename(columns={
        '开盘时间': 'candle_begin_time',
        '开盘价': 'open',
        '最高价': 'high',
        '最低价': 'low',
        '收盘价': 'close',
        '交易数量': 'volume'
    },
                    inplace=True)
    all_data.drop(['交易品种'], axis=1, inplace=True)
    all_data.reset_index(inplace=True, drop=True)
    # 压缩格式存储
    h5 = pd.HDFStore(utils.project_path() + '/data/bitfinex_dataXRPUSD.h5',
                     'w',
                     complevel=4,
                     complib='blosc')
    h5['data'] = all_data
    h5.close()
    pass
Esempio n. 7
0
async def index(request):
    with open(project_path() + '/webUI/templates/search.html', encoding='utf-8') as html_file:
        template = Template(html_file.read())
        return response.html(template.render(name='index2'))