parser = argparse.ArgumentParser() parser.add_argument('-x', '--width', type=int, default=640, help='Width of the generated images') parser.add_argument('-y', '--height', type=int, default=480, help='Height of the generated images') args = parser.parse_args() generator = SheetMetalGenerator(args) image, mask = generator.generate() assert len(image.shape) == 3 assert image.shape[0] == args.height assert image.shape[1] == args.width assert image.shape[2] == 3 assert image.dtype == np.float64 assert len(mask.shape) == 2 assert mask.shape[0] == args.height assert mask.shape[1] == args.width assert mask.dtype == np.float64 utils.show_image([image, 'Sheet metal'], [mask, 'Specimen mask'])
# # Parse command line arguments # parser = argparse.ArgumentParser () parser.add_argument ('-x', '--width', type=int, default=640, help='Width of the generated images') parser.add_argument ('-y', '--height', type=int, default=480, help='Height of the generated images') generator.background.BackgroundGenerator.add_to_args_definition (parser) args = parser.parse_args () parts = [generator.background.BackgroundGenerator.create (args), generator.fixture.FixtureGenerator (args)] source = generator.generator.StackedGenerator (args, parts) image, mask = source.generate () assert len (mask.shape) == 3 assert image.shape[0] == args.height assert image.shape[1] == args.width assert image.shape[2] == 3 assert image.dtype == np.float64 assert len (mask.shape) == 2 assert mask.shape[0] == args.height assert mask.shape[1] == args.width assert mask.dtype == np.float64 utils.show_image ([image, 'Fixture'], [mask, 'Mask'])
if args.performance: start_time = time.process_time() images, masks = next(data.generate) model.predict(images) elapsed_time = (time.process_time() - start_time) / (10 * args.performance) print('Single run duration: {0:.4f} s'.format(elapsed_time)) start_time = time.process_time() result = model.predict(images)[0] print('Duration: {0:.4f}s'.format((time.process_time() - start_time) / 10)) print(result.shape) mask = np.zeros(result.shape[0:2]) mask[result[:, :, 0] > 0.5] = 1.0 mask[result[:, :, 1] > 0.5] = 0.5 utils.show_image([images[0], 'Generated image'], [mask, 'Predicted specimen features']) # # Tensorflow termination bug workaround # gc.collect()
# parser = argparse.ArgumentParser() parser.add_argument('-x', '--width', type=int, default=640, help='Width of the generated images') parser.add_argument('-y', '--height', type=int, default=480, help='Height of the generated images') parser.add_argument('-c', '--color', type=float, default=0.3, help='Color seed') parser.add_argument('-s', '--shine', type=float, default=0.1, help='Shine seed') args = parser.parse_args() texture_creator = MetalTextureCreator(args.width, args.height, args.color, args.shine) image = texture_creator.create() utils.show_image([image, 'Metal texture'])
args = parser.parse_args() # # Instantiate generator class from command line arguments # generator = BackgroundGenerator.create(args) if args.profile: pr = cProfile.Profile() pr.enable() # # Generate image probe # image, mask = generator.generate() assert mask is None assert image.shape[0] == args.height assert image.shape[1] == args.width assert image.shape[2] == 3 assert image.dtype == np.float64 if args.profile: pr.disable() stats = pstats.Stats(pr, stream=sys.stdout).sort_stats('cumulative') stats.print_stats() utils.show_image([image, 'Generated background'])