Esempio n. 1
0
def yolo5_postprocess_np(yolo_outputs,
                         image_shape,
                         anchors,
                         num_classes,
                         model_image_size,
                         max_boxes=100,
                         confidence=0.1,
                         iou_threshold=0.4,
                         elim_grid_sense=True):
    predictions = yolo5_decode(yolo_outputs,
                               anchors,
                               num_classes,
                               input_dims=model_image_size,
                               elim_grid_sense=elim_grid_sense)
    predictions = yolo_correct_boxes(predictions, image_shape,
                                     model_image_size)

    boxes, classes, scores = yolo_handle_predictions(
        predictions,
        image_shape,
        max_boxes=max_boxes,
        confidence=confidence,
        iou_threshold=iou_threshold,
        use_cluster_nms=True)

    boxes = yolo_adjust_boxes(boxes, image_shape)

    return boxes, classes, scores
Esempio n. 2
0
def yolo3_postprocess_np(yolo_outputs,
                         image_shape,
                         anchors,
                         num_classes,
                         model_input_shape,
                         max_boxes=100,
                         confidence=0.1,
                         iou_threshold=0.4,
                         elim_grid_sense=False):
    # here we sort the prediction tensor list with grid size (e.g. 19/38/76)
    # to make sure it matches with anchors order
    yolo_outputs.sort(key=lambda x: x.shape[1])

    predictions = yolo3_decode(yolo_outputs,
                               anchors,
                               num_classes,
                               input_shape=model_input_shape,
                               elim_grid_sense=elim_grid_sense)
    predictions = yolo_correct_boxes(predictions, image_shape,
                                     model_input_shape)

    boxes, classes, scores = yolo_handle_predictions(
        predictions,
        image_shape,
        num_classes,
        max_boxes=max_boxes,
        confidence=confidence,
        iou_threshold=iou_threshold)

    boxes = yolo_adjust_boxes(boxes, image_shape)

    return boxes, classes, scores
def yolo2_postprocess_np(yolo_outputs,
                         image_shape,
                         anchors,
                         num_classes,
                         model_input_shape,
                         max_boxes=100,
                         confidence=0.1,
                         iou_threshold=0.4,
                         elim_grid_sense=False):

    scale_x_y = 1.05 if elim_grid_sense else None
    predictions = yolo_decode(yolo_outputs,
                              anchors,
                              num_classes,
                              input_shape=model_input_shape,
                              scale_x_y=scale_x_y,
                              use_softmax=True)
    predictions = yolo_correct_boxes(predictions, image_shape,
                                     model_input_shape)

    boxes, classes, scores = yolo_handle_predictions(
        predictions,
        image_shape,
        num_classes,
        max_boxes=max_boxes,
        confidence=confidence,
        iou_threshold=iou_threshold)

    boxes = yolo_adjust_boxes(boxes, image_shape)

    return boxes, classes, scores
Esempio n. 4
0
def yolo2_postprocess_np(yolo_outputs, image_shape, anchors, num_classes, model_image_size, max_boxes=100, confidence=0.1, iou_threshold=0.4):
    predictions = yolo_head(yolo_outputs, anchors, num_classes, input_dims=model_image_size, use_softmax=True)
    predictions = yolo_correct_boxes(predictions, image_shape, model_image_size)

    boxes, classes, scores = yolo_handle_predictions(predictions,
                                                     image_shape,
                                                     max_boxes=max_boxes,
                                                     confidence=confidence,
                                                     iou_threshold=iou_threshold)

    boxes = yolo_adjust_boxes(boxes, image_shape)

    return boxes, classes, scores