Esempio n. 1
0
 def get_zsxx_info(self):
     sssqz_max = self.sssqz_max.strftime('%Y-%m-%d')
     data, sssqz_max = handle(self.nsrsbh, sssqz_max).get_sbxx_data()
     if not self.sssqz_max:
         self.sssqz_max = sssqz_max
     sssqz = sssqz_max.strftime('%Y-%m-%d')
     sql = '''select distinct nsrsbh,
                 sssq_q,
                 sssq_z,
                 jkqx,
                 jkfsrq,
                 se,
                 zsxm_mc,
                 SKZL_MC
             from zx_sbzsxx_sample_w_2 a
             where not exists (select 1
             from zx_sbzsxx_sample_w_2 b
             where a.nsrsbh = b.nsrsbh
             and substr(a.sssq_q,1,4)=substr(b.sssq_q,1,4)
             and a.lrsj < b.lrsj - 3 / 24 / 60)
      and sssq_z <= '{0}'
      and nsrsbh = '{1}' '''.format(sssqz, self.nsrsbh)
     result, col = self.db_handle.query(sql)
     zsxx_info = common.dataframe(result, col)
     #self.sssqz_max = datetime.datetime.strptime(zsxx_info['sssq_z'].max(),
     #                                            '%Y-%m-%d')
     self.zsxx_info = zsxx_info
     print(zsxx_info.head())
Esempio n. 2
0
 def get_cw_data(self):
     sql = '''select a.*,b.* from zcfzb_xm a, lrb_xm b
         where a.nsrsbh=b.nsrsbh and a.nsrsbh='{0}'
         '''.format(self.nsrsbh)
     result, col = self.db_handle.query(sql)
     self.cw_data = common.dataframe(result, col)
     pprint(self.cw_data)
Esempio n. 3
0
 def get_sbxx_data(self):
     sql = '''select distinct nsrsbh,
                 t.sssqq,
                 t.sssqz,
                 t.qbxse,
                 t.ysxssr,
                 t.ybtse,
                 t.yjse,
                 t.jmse,
                 t.sbrq,
                 t.sbqx,
                 t.zsxmmc
     from  zx_sbxx_sample_w_2 t
     where t.nsrsbh = '{0}'
     and sssqq >= to_char(sysdate - 365 * 3, 'yyyy-mm-dd')
     and ZSXMMC IN ('增值税', '企业所得税')
     and not exists (select 1
             from zx_sbxx_sample_w_2 b
             where t.nsrsbh = b.nsrsbh
             and t.lrsj < b.lrsj - 3 / 24 / 60)'''.format(self.nsrsbh)
     result, col = self.db_handle.query(sql)
     sbxx_df = common.dataframe(result, col)
     sssqz_max = datetime.datetime.strptime(sbxx_df['sssqz'].max(),
                                            '%Y-%m-%d')
     if not self.sssqz_max:
         self.sssqz_max = sssqz_max
     for i in ['qbxse', 'jmse', 'yjse', 'ybtse']:
         sbxx_df[i] = sbxx_df[i].astype('float')
     sssqz = self.sssqz_max.strftime('%Y-%m-%d')
     self.data = sbxx_df[sbxx_df['sssqz'] <= sssqz]
     pprint(sbxx_df)
     return self.data, self.sssqz_max
Esempio n. 4
0
 def get_jc_info(self):
     #稽查信息
     sql = '''select distinct wfwzlxmc, aydjrq, jclxmc from
                 zx_jcajxx_sample a where nsrsbh = '{0}' and
                 not exists
                 (select 1
                     from zx_jcajxx_sample b
                     where a.nsrsbh = b.nsrsbh
                     and substr(a.AYDJRQ, 1, 4) = substr(b.AYDJRQ, 1, 4)
                     and a.lrsj < b.lrsj - 3 / 24 / 60) '''.format(
         self.nsrsbh)
     result, col = self.db_handle.query(sql)
     jc_df = common.dataframe(result, col)
     pprint(jc_df)
     month_bins = [3, 6, 12, 24]
     jc_info = DataFrame(index=[0])
     sssqz = self.sssqz_max
     for n in month_bins:
         #距离观察时间n个月
         date_diff_1 = (sssqz -
                        relativedelta(months=0)).strftime('%Y-%m-%d')
         date_diff_2 = (sssqz -
                        relativedelta(months=n)).strftime('%Y-%m-%d')
         #获取满足条件的数据
         data = jc_df[(jc_df['aydjrq'] < date_diff_1)
                      & (jc_df['aydjrq'] > date_diff_2)]
         jc_info['jcaj' + '_' + str(n)] = len(data)
     pprint(jc_info)
     return jc_info
Esempio n. 5
0
 def get_nsrjcxx_info(self):
     if not self.sssqz_max:
         data, self.sssqz_max = handle(self.nsrsbh,
                                       self.sssqz_max).get_sbxx_data()
     #nsr基础信息
     sql = '''select nsrsbh,sshydm ,zczb,nslxmc,xydj ,kyrq from
      (select * from t_nsrjcxx where nsrsbh='{0}' order by lrsj desc)
       where rownum=1'''.format(self.nsrsbh)
     result, col = self.db_handle.query(sql)
     nsr_df = common.dataframe(result, col)
     #行业代码
     sql = '''select hyml_dm,hymx_dm from dm_hy_2017'''
     result, col = self.db_handle.query(sql)
     hydm_df = common.dataframe(result, col)
     hydm_df.columns = ['hyml_dm', 'sshydm']
     nsr_info = pd.merge(nsr_df, hydm_df, how='left', on='sshydm')
     nsr_info['hy_class'] = nsr_info['hyml_dm'].apply(
         lambda x: self.transform_hydm(x))
     nsr_info['kyrq_dis'] = (self.sssqz_max - pd.to_datetime(
         nsr_info['kyrq'])).apply(lambda x: round(x.days / 365.0, 1))
     nsr_info.rename(columns={
         'sshydm': 'hy',
         'xydj': 'nsrxypj',
         'nslxmc': 'nsrlx'
     },
                     inplace=True)
     nsr_info.drop(['hyml_dm', 'kyrq'], axis=1, inplace=True)
     #nsr 年龄与性别
     sql = '''select dbr_zjhm from zx_lxrxx_sample a where not exists
     (select 1 from zx_lxrxx_sample b where a.nsrsbh = b.nsrsbh
     and a.lrsj < b.lrsj - 3 / 24 / 60) and nsrsbh ='{0}'  
     and bssf = 1'''.format(self.nsrsbh)
     result, col = self.db_handle.query(sql)
     lxrxx_info = common.dataframe(result, col)
     nsr_info['nl_1'] = lxrxx_info['dbr_zjhm'].apply(
         lambda x: self.transform_sfz(x, True))
     nsr_info['xb_1'] = lxrxx_info['dbr_zjhm'].apply(
         lambda x: self.transform_sfz(x, False))
     nsr_info['dbr_zjhm'] = lxrxx_info['dbr_zjhm']
     #pprint(lxrxx_info.loc[0].ix[0][6:10])
     pprint(nsr_info)
     return nsr_info
Esempio n. 6
0
 def payh_sbxx_check(self):
     sql = '''select * from t_payh_sb where nsrsbh='{0}' '''.format(
         self.nsrsbh)
     result, col = self.db_handle.query(sql)
     sbxx_info = common.dataframe(result, col)
     #pprint(sbxx_info)
     sb_feature = handle(self.nsrsbh, self.sssqz_max).get_concat_df()
     #pprint(sb_feature)
     sb_equal, sb_diff = self.check_data(sb_feature, sbxx_info)
     pprint(sb_diff)
     sb_equal.to_csv(self.path + 'sb_equal.csv')
     sb_diff.to_csv(self.path + 'sb_diff.csv')
Esempio n. 7
0
 def payh_cwzb_check(self):
     sql = '''select a.*,b.* from t_cwzb_list a,t_cwzb_list_1 b where a.nsrsbh=b.nsrsbh and a.nsrsbh='{0}' and rownum=1'''.format(
         self.nsrsbh)
     result, col = self.db_handle.query(sql)
     cwzb_info = common.dataframe(result, col)
     #pprint(cwzb_info)
     cwzb_feature = handle_cwzb(self.nsrsbh).get_concat_df()
     #pprint(cwzb_feature)
     cwzb_equal, cwzb_diff = self.check_data(cwzb_feature, cwzb_info)
     cwzb_equal.to_csv(self.path + 'cwzb_equal.csv')
     cwzb_diff.to_csv(self.path + 'cwzb_diff.csv')
     return cwzb_equal, cwzb_diff
Esempio n. 8
0
    def get_wfwz_info(self):
        sql = '''select distinct zywfwzss, djrq, wfwzlxdm
            from zx_wfwzxx_sample a where nsrsbh = '{0}' and not
            exists
            (select 1
                    from zx_wfwzxx_sample b
                    where a.nsrsbh = b.nsrsbh
                    and substr(a.DJRQ,1,4)=substr(b.DJRQ,1,4)
                    and a.lrsj < b.lrsj - 3 / 24 / 60) '''.format(self.nsrsbh)
        result, col = self.db_handle.query(sql)
        wfwz_df = common.dataframe(result, col)
        pprint(wfwz_df)
        #违章代碼
        wzmc = [
            '发票违法次数', '非主观故意违法次数', '抗税次数', '骗税次数', '其他违法次数', '税收政策例外违法次数',
            '税务机关执法不当次数', '逃避缴纳税款', '违反税收管理次数'
        ]
        wzdm = ['04', '06', '03', '02', '99', '08', '07', '01', '05', '']
        #指标名称
        zbmc = [
            'wfwz_fpwf', 'wfwz_fzggy', 'wfwz_ks', 'wfwz_ps', 'wfwz_qt',
            'wfwz_sszclwwfcs', 'wfwz_swjg', 'wfwz_tbjnsk', 'wfwz_wfssgl',
            'wfwz'
        ]
        month_bins = [3, 6, 9, 12]
        wfwz_info = DataFrame(index=[0])
        sssqz = self.sssqz_max
        for i, j in zip(wzdm, zbmc):
            for n in month_bins:
                #距离观察时间n个月
                date_diff_1 = (sssqz -
                               relativedelta(months=0)).strftime('%Y-%m-%d')
                date_diff_2 = (sssqz -
                               relativedelta(months=n)).strftime('%Y-%m-%d')
                #获取满足条件的数据
                if j == 'wfwz':
                    data = wfwz_df[(wfwz_df['djrq'] > date_diff_2)
                                   & (wfwz_df['djrq'] < date_diff_1)]
                else:
                    data = wfwz_df[(wfwz_df['wfwzlxdm'] == i)
                                   & (wfwz_df['djrq'] > date_diff_2) &
                                   ((wfwz_df['djrq'] < date_diff_1))]
                wfwz_info[j + '_' + str(n) + 'm'] = len(data)
        #wfwz_24m
        date_diff_1 = (sssqz - relativedelta(months=0)).strftime('%Y-%m-%d')
        date_diff_2 = (sssqz - relativedelta(months=24)).strftime('%Y-%m-%d')
        data = wfwz_df[(wfwz_df['djrq'] > date_diff_2)
                       & (wfwz_df['djrq'] < date_diff_1)]
        wfwz_info['wfwz_24m'] = len(data)

        pprint(wfwz_info)
        return wfwz_info
Esempio n. 9
0
 def get_bg_info(self):
     sql = '''select distinct bgrq, bgqnr, bghnr, bgxmmc
         from zx_bgdjxx_sample a where nsrsbh ='{0}' and bgqnr != bghnr
         and not exists
        (select 1
                 from zx_bgdjxx_sample b
                where a.nsrsbh = b.nsrsbh
                  and substr(a.bgrq, 1, 4) = substr(b.bgrq, 1, 4)
                  and a.lrsj < b.lrsj - 3 / 24 / 60) '''.format(self.nsrsbh)
     result, col = self.db_handle.query(sql)
     bg_df = common.dataframe(result, col)
     pprint(bg_df)
     #变更名称
     bgmc = [
         '办税人员证件号码', '财务负责人身份证件号码', '生产经营地址', '投资方', '注册资本', '经营范围',
         ['法定代表人(负责人)移动电话', '法定代表人(负责人、业主)移动电话'], ['国标行业', '国标行业(附)']
     ]
     #指标名称代码
     zbmc = [
         'bg_bsry', 'bg_cwfzr', 'bg_dz', 'bg_tzf', 'bg_zczb', 'jyfw',
         'bg_frdbdh', 'bg_hybg'
     ]
     month_bins = [
         3,
         6,
         9,
         12,
         24,
     ]
     sssqz = self.sssqz_max
     bg_info = DataFrame(index=[0])
     flag = 0
     for i, j in zip(bgmc, zbmc):
         flag += 1
         for n in month_bins:
             #距离观察时间n个月
             date_diff_1 = (sssqz -
                            relativedelta(months=0)).strftime('%Y-%m-%d')
             date_diff_2 = (sssqz -
                            relativedelta(months=n)).strftime('%Y-%m-%d')
             #获取满足条件的数据
             if flag <= 6:
                 data = bg_df[(bg_df['bgxmmc'] == i)
                              & (bg_df['bgrq'] < date_diff_1) &
                              (bg_df['bgrq'] > date_diff_2)]
             else:
                 data = bg_df[(bg_df['bgxmmc'].isin(i))
                              & (bg_df['bgrq'] < date_diff_1) &
                              (bg_df['bgrq'] > date_diff_2)]
             bg_info[j + '_' + str(n) + 'm'] = len(data)
     pprint(bg_info)
     return bg_info
Esempio n. 10
0
 def payh_sxyxx_check(self):
     sql = '''select * from t_payh_sxyxx_2 where nsrsbh='{0}' '''.format(
         self.nsrsbh)
     result, col = self.db_handle.query(sql)
     sxy_info = common.dataframe(result, col)
     pprint(sxy_info)
     sxy_feature = handle_sxyxx(self.nsrsbh, self.sssqz_max).get_concat_df()
     pprint(sxy_feature.head())
     sxy_equal, sxy_diff = self.check_data(sxy_feature, sxy_info)
     pprint(sxy_diff)
     sxy_equal.to_csv(self.path + 'sxy_equal.csv')
     sxy_diff.to_csv(self.path + 'sxy_diff.csv')
     return sxy_equal, sxy_diff
Esempio n. 11
0
 def payh_zsxx_check(self):
     sql = '''select * from t_payh_sbzs_xz where nsrsbh='{0}' '''.format(
         self.nsrsbh)
     result, col = self.db_handle.query(sql)
     zsxx_info = common.dataframe(result, col)
     pprint(zsxx_info)
     zsxx_feature = handle_zsxx(self.nsrsbh, self.sssqz_max).get_concat_df()
     pprint('zsxx_feature:')
     pprint(zsxx_feature)
     zsxx_equal, zsxx_diff = self.check_data(zsxx_feature, zsxx_info)
     pprint(zsxx_diff)
     zsxx_equal.to_csv(self.path + 'zsxx_equal.csv')
     zsxx_diff.to_csv(self.path + 'zsxx_diff.csv')
     return zsxx_equal, zsxx_diff
Esempio n. 12
0
 def payh_jcxx_check(self):
     sql = '''select * from t_payh_jbxx_2 where nsrsbh='{0}' '''.format(
         self.nsrsbh)
     result, col = self.db_handle.query(sql)
     jcxx_info = common.dataframe(result, col)
     pprint('jcxx:')
     pprint(jcxx_info)
     jcxx_feature = handle_jcxx(self.nsrsbh, self.sssqz_max).get_concat_df()
     pprint('jcxx_feature:')
     pprint(jcxx_feature)
     jcxx_equal, jcxx_diff = self.check_data(jcxx_feature, jcxx_info)
     pprint(jcxx_diff)
     jcxx_equal.to_csv(self.path + 'jcxx_equal.csv')
     jcxx_diff.to_csv(self.path + 'jcxx_diff.csv')
     return jcxx_equal, jcxx_diff
Esempio n. 13
0
 def get_tzf_info(self):
     #投资方信息
     sql = '''select distinct nsrsbh,tzfmc,tzfjjxzdm,tzbl,tzfjjxzmc,
         zjhm,tzbl * tzbl as tzbl2 from zx_tzfxx_sample a 
        where nsrsbh = '{0}' and not exists
        (select 1 from zx_tzfxx_sample b where a.nsrsbh = b.nsrsbh
         and a.lrsj < b.lrsj - 3 / 24 / 60)'''.format(self.nsrsbh)
     result, col = self.db_handle.query(sql)
     tzf_df = common.dataframe(result, col)
     tzf_info = DataFrame(index=[0])
     #tzfjjxzdm = ['400', '410', '411', '412', '413']
     tzf_info['holder_count'] = len(tzf_df)
     tzf_info['holder_count_natural'] = len(
         tzf_df[(tzf_df['tzfjjxzdm'].notnull())
                & (tzf_df['tzfjjxzdm'].str.startswith('4'))])
     #tzf_info['holder_count_corporate'] = len(
     #    tzf_df[~(tzf_df['tzfjjxzdm'].str.startswith('4'))
     #           & (tzf_df['tzfjjxzdm'].notnull())])
     tzf_info['holder_count_corporate'] = tzf_info[
         'holder_count'] - tzf_info['holder_count_natural']
     tzf_info['hh_index'] = tzf_df['tzbl2'].sum()
     #第一大股东
     nsr_df = self.get_nsrjcxx_info()
     tzf_df_new = tzf_df[tzf_df['tzbl'] == tzf_df['tzbl'].max()]
     holder_first = tzf_df_new[(tzf_df_new['tzfjjxzdm'].str.startswith('4'))
                               & (tzf_df_new['tzfjjxzdm'].notnull())]
     if len(holder_first) > 0:
         tzf_info['holder_first'] = 0
         tzf_info['holdr_first_frdb'] = 0
     else:
         tzf_info['holder_first'] = 1
     holdr_frdb_1 = tzf_df_new[(tzf_df_new['tzfjjxzdm'].str.startswith('4'))
                               & (tzf_df_new['tzfjjxzdm'].notnull())
                               & (tzf_df_new['zjhm']
                                  == nsr_df['dbr_zjhm'].values[0])]
     holdr_frdb_2 = tzf_df_new[(tzf_df_new['tzfjjxzdm'].notnull())
                               &
                               (tzf_df_new['tzfjjxzdm'].str.startswith('4'))
                               & (tzf_df_new['zjhm'] == 'X')]
     if len(holdr_frdb_1) > 0 or len(holdr_frdb_2) > 0:
         tzf_info['holder_first_frdb'] = 1
     elif 'holder_first_frdb' not in tzf_info.columns:
         tzf_info['holder_first_frdb'] = 2
     pprint(tzf_info)
     return tzf_info
Esempio n. 14
0
    def get_sxy_data(self):
        #data, sssqz_max = handle(self.nsrsbh, self.sssqz_max).get_sbxx_data()
        sssqz_max = self.sssqz_max.strftime('%Y-%m-%d')
        xse_info = handle(self.nsrsbh, sssqz_max).get_xse_info()
        self.qbxse_last = xse_info['qbxse_last'].min()
        self.qbxse_pre = xse_info['qbxse_1_1'].min()
        if not self.sssqz_max:
            self.now_year = sssqz_max.strftime('%Y-%m-%d')[:4]
        else:
            self.now_year = self.sssqz_max.strftime('%Y-%m-%d')[:4]
        self.last_year = str(int(self.now_year) - 1)
        sql = '''select distinct jyje,
                        jyjebl,
                        gfnsrsbh,
                        xfnsrsbh,
                        sssq,
                        sxybz,
                        nsrsbh,
                        se,
                        pm,
                        nsrmc
                from zx_jydx a
                where nsrsbh = '{0}'
                and sssq <= '{1}'
                and not exists
                (select *
                    from zx_jydx b
                    where a.nsrsbh = b.nsrsbh
                    and a.sssq = b.sssq
                    and a.lrsj < b.lrsj - 3 / 24 / 60)'''.format(
            self.nsrsbh, self.now_year)
        result, col = self.db_handle.query(sql)
        self.sxy = common.dataframe(result, col)
        for col in ['jyje', 'jyjebl', 'se', 'pm', 'sxybz']:
            self.sxy[col] = self.sxy[col].astype('float')

        pprint(self.sxy)