Esempio n. 1
0
def distinct_prime_factor_count(n):
    f = factors(n) - set([1, n])

    prime_factors = set([])
    for p in f:
        if isprime(p):
            prime_factors.add(p)

    return len(prime_factors)
def main(limit: int):
    """Return the triangle number with factors over the limit.

    :return: Triangle number with over the `limit` divisors.
    """
    for triangle_number in triangle_number_generator():
        if len(factors(triangle_number)) > limit:
            return triangle_number
        else:
            continue
Esempio n. 3
0
File: p23.py Progetto: colons/euler
def is_abundant(n):
    fs = factors(n)
    fs.remove(n)
    
    s = 0

    for f in fs:
        s += f

    if s > n:
        return True
    else:
        return False
Esempio n. 4
0
#!/usr/bin/python
from common import factors
#set the total to 0
total = 0
#go through all numbers (1, 10000]
for a in range(1, 10000):
	b = sum(factors(a))
	#if d(a) == d(b) and a != b add to total 
	if a != b and a == sum(factors(b)):
		total += a

#print the total
print total
Esempio n. 5
0
from common import factors

N = 999 * 999

def palindrome(num):
    num = str(num)
    n = len(num) // 2

    if num[0:n][::-1] == num[n if n % 2 != 0 else n + 1 : ]:
        return True
    else:
        return False

#Check to see  if there is a factor of length 3 that matches with another length 3 factor.
def check_factors(factors, n) :
    factors = filter(lambda x: len(str(x)) == 3, factors)
    for i in factors:
        if(len(str(n/i)) == 3):
            print i, n/i
            return True

for i in xrange(N, 100 * 100, -1):
    if palindrome(i) and check_factors(factors(i), i):
        print 'Biggest Palindrome is  ', i
        break;

Esempio n. 6
0
			if i > value/2:
				return False
			tmp = abundantNumbers.index(value-i)
			return True
		except:
			continue
	return False

#largest number that can't be written as sum of 2 abundeant numbers
maxNumber = 28123

#list of abundunt numbers
abundantNumbers = []

#sum of numbers that cant be added up by 2 abundant numbers
total = 0

#go through all numbers below max
for i in range(1, maxNumber+1):
	#get the sum of the factors and append to abundant if it is
	if sum(factors(i)) > i:
		abundantNumbers.append(i)
	
	#if it is now abundant add to total
	if not isAbundant(i):
		total += i
	
print total
			

Esempio n. 7
0
# Problem 3
# 02 November 2001

# The prime factors of 13195 are 5, 7, 13 and 29.

# What is the largest prime factor of the number 600851475143 ?

from common import factors

print(list(factors(600851475143))[-1])
Esempio n. 8
0
#!/usr/bin/env python

from common import factors

def triangle_number(n):
    return sum(xrange(n+1))

for n in xrange(2, 100000):
    tn = triangle_number(n)
    ln = len(factors(tn))
    #print n, tn, ln
    if ln > 100:
        print "Over 100 factors ", n, tn, ln
    if ln > 500:
        print "Over 500 factors ", n, tn, ln
        break
Esempio n. 9
0
def prime_factors(n, sieve):
    f = factors(n)
    f.remove(1)
    f.remove(n)
    return [i for i in f if sieve[i]]