Esempio n. 1
0
def main():
    """
    :param arg:
     输入文件路径:
        文件树结构(例如):
            ——arg
                ——人工                    (此目录下的wav文件均会被读取,并将标记为人工井内施工)
                    20180310253.wav
                    ——2018.1.3
                        20180103111.wav
                        
                ——机械施工
                ——放缆
            
    :return: 
    """
    with open('.\\test_config.json', encoding='UTF-8') as file:
        test_config = json.load(file, strict=False)
    path = test_config['test_data_path']
    seg_param = test_config['seg_param']
    seg = seg_param['seg']  # 4s分段
    nw = seg_param['nw']  # 帧长约23ms*4
    n_mfcc = seg_param['n_mfcc']  # mfcc 维数
    save_file = test_config['hmm_model']
    data_dict = load_audio(path, seg, nw, n_mfcc)

    # save_file = '..\\model'
    hmms_model = hmms()
    model_list = common.find_ext_files(save_file, ext='.npy')
    for model_file in model_list:
        hmms_model.load_one_model(model_file)  # 加载模型
    # hmms_model.load_model(save_file)
    model_num = len(hmms_model.hmms)

    for key in data_dict:
        print('当前预测音频文件夹:%s' % key)
        instance = data_dict[key]
        audio_num = instance.get_num()
        species_count = np.zeros(model_num)
        for j in range(audio_num):
            # print('\t音频名:%s' % instance.audio_name[j])
            frame_data = instance.frame[j]
            length = instance.frame_num[j]
            predicts = hmms_model.batch_predict(frame_data, length=length)
            count = np.bincount(predicts)
            # for i in range(len(count)):
            #     print('\t\t%s:%d' % (hmms_model.model_name[i], count[i]), end='\t')

            major = np.argmax(count)
            if hmms_model.model_name[major] == '背景音':
                count[major] = 0
            major = np.argmax(count)
            species_count[major] += 1
            # print('\n\t\t预测结果:%s\n' % hmms_model.model_name[major])
        print('当前种类识别分布:')
        species_count /= audio_num
        for i in range(model_num):
            print('\t%s: %f' % (hmms_model.model_name[i], species_count[i]))
Esempio n. 2
0
def load_audio(path, seg, nw, n_mfcc):
    # seg = 4 # 2s分段
    # nw = 1024 # 帧长约23ms*4
    # n_mfcc = 32  # mfcc 维数

    folder_list = common.list_files(path)
    data_dict = {}
    for folder in folder_list:
        species = folder.split('\\')[-1]
        wav_list = common.find_ext_files(folder, '.wav')
        instance = dataObejct()
        for wav in wav_list:
            wavname = wav.split('\\')[-1]
            wav_data, fs = common.read_wav_file(wav)
            # 多通道仅取一通道
            if wav_data.ndim > 1:
                wav_data = wav_data[:, 0]
            wav_data = wav_data.T
            ref_value = 2**12 - 1
            wav_data = wav_data / ref_value  # wave幅值归一化

            filter_data = common.butter_worth_filter(wav_data,
                                                     cutoff=1000,
                                                     fs=fs,
                                                     btype='high',
                                                     N=8)

            seg_mfcc, frame_num = enframe_and_feature_extract(
                filter_data, seg, nw, fs, n_mfcc)

            # # 输出为[n_mfcc, n_sample]
            # mfcc_data = librosa.feature.mfcc(y=filter_data, sr=fs, n_mfcc=n_mfcc, n_fft=nw, hop_length=inc)

            instance.append(audio_name=wavname,
                            origin=filter_data,
                            frame=seg_mfcc,
                            frame_num=frame_num)
        data_dict[species] = instance
    return data_dict
Esempio n. 3
0
def load_and_train(path, seg, nw, n_mfcc, save_path):
    """
    :param path: 音频存储路径
    :param nw: 帧长
    :param n_mfcc: mfcc特征维数
    :return: 
    hmm_models, hmm模型对象
    test_list,list[instance('frame':分帧数据 ,'origin':原始音频数据(滤波), 'frame_num':帧数), ]
    """
    hmm_models = hmms(n_iter=1000)

    list_folders = common.list_files(path)

    test_list = []

    for i in range(len(list_folders)):
        name = list_folders[i].split('\\')[-1]
        config_name = os.path.join(path, name + '.json')
        with open(config_name, encoding='UTF-8') as file:
            config = json.load(file)
        n_components = config['n_components']
        n_mixs = config['n_mixs']
        audio_num_for_train = config['audio num for train']
        # audio_num_for_train=10

        list_wavs = common.find_ext_files(list_folders[i], ext='.wav')
        print('%d = %s num:%d' % (i, list_folders[i], len(list_wavs)))

        list_wavs = shuffle_list(list_wavs)
        instance = dataObejct()
        instance.set_name(name)
        debug = 0
        for wavname in list_wavs:
            if debug >= audio_num_for_train:
                break
            debug += 1
            wav_data, fs = common.read_wav_file(wavname)
            # 多通道仅取一通道
            if wav_data.ndim > 1:
                wav_data = wav_data[:, 0]
            wav_data = wav_data.T
            ref_value = 2**12 - 1
            wav_data = wav_data / ref_value  # wave幅值归一化

            filter_data = common.butter_worth_filter(wav_data,
                                                     cutoff=1000,
                                                     fs=fs,
                                                     btype='high',
                                                     N=8)

            seg_mfcc, frame_num = enframe_and_feature_extract(
                filter_data, seg, nw, fs, n_mfcc)

            # # 输出为[n_mfcc, n_sample]
            # mfcc_data = librosa.feature.mfcc(y=filter_data, sr=fs, n_mfcc=n_mfcc, n_fft=nw, hop_length=inc)

            instance.append(audio_name=wavname,
                            origin=filter_data,
                            frame=seg_mfcc,
                            frame_num=frame_num)

        split_ = int(instance.get_num() / 2)
        shuffled_instance = instance.shuffle()
        train_samples = shuffled_instance[split_:]
        # 确定训练集最大帧数,留作样本平衡使用。
        train_samples.recompute_total()
        train_samples.set_name(name)
        frames = np.empty((0, n_mfcc))
        frames_num = []
        npy_name = name + '_' + str(n_mixs) + '_' + str(n_components) + '.npy'
        save_name = os.path.join(save_path, npy_name)
        if not os.path.exists(save_name):
            for j in range(len(train_samples.origin)):
                frame_data = train_samples.frame[j]
                frame_data = frame_data.reshape((-1, n_mfcc))
                frames = np.vstack((frames, frame_data))
                frames_num += train_samples.frame_num[j]
            if sum(frames_num) != frames.shape[0]:
                print('sum(frames_num) = ', sum(frames_num))
                print('total frames = ', frames.shape[0])
                raise ValueError('sum(frames_num) != frames.shape[0]')
            hmm_models.train_one(frames, frames_num, n_components, n_mixs,
                                 name)
        else:
            print('\t模型%s已存在,加载模型' % npy_name)
            hmm_models.load_one_model(save_name)
        test_samples = shuffled_instance[:split_]
        test_samples.set_name(name)
        test_list.append(test_samples)
    hmm_models.save_model(save_path)
    return hmm_models, test_list
Esempio n. 4
0
def load_optical_data(path, seg, nw, n_mfcc):
    """
    :param path: 音频存储路径
    :param nw: 帧长
    :param n_mfcc: mfcc特征维数
    :return: 
    train_list,list[instance('frame':分帧数据 ,'origin':原始音频数据(滤波), 'frame_num':帧数), ]
    test_list,list[instance('frame':分帧数据 ,'origin':原始音频数据(滤波), 'frame_num':帧数), ]
    """

    list_folders = common.list_files(path)
    train_list = []
    test_list = []

    for i in range(len(list_folders)):
        name = list_folders[i].split('\\')[-1]
        list_wavs = common.find_ext_files(list_folders[i], ext='.wav')
        print('%d = %s num:%d' % (i, list_folders[i], len(list_wavs)))

        list_wavs = shuffle_list(list_wavs)
        instance = dataObejct()
        instance.set_name(name)
        debug = 0
        for wavname in list_wavs:
            if debug >= 200:
                break
            debug += 1
            wav_data, fs = common.read_wav_file(wavname)
            # 多通道仅取一通道
            if wav_data.ndim > 1:
                wav_data = wav_data[:, 0]
            wav_data = wav_data.T
            ref_value = 2**12 - 1
            wav_data = wav_data / ref_value  # wave幅值归一化

            filter_data = common.butter_worth_filter(wav_data,
                                                     cutoff=1000,
                                                     fs=fs,
                                                     btype='high',
                                                     N=8)

            seg_mfcc, frame_num = enframe_and_feature_extract(
                filter_data, seg, nw, fs, n_mfcc)

            # # 输出为[n_mfcc, n_sample]
            # mfcc_data = librosa.feature.mfcc(y=filter_data, sr=fs, n_mfcc=n_mfcc, n_fft=nw, hop_length=inc)

            instance.append(audio_name=wavname,
                            origin=filter_data,
                            frame=seg_mfcc,
                            frame_num=frame_num)

        split_ = int(instance.get_num() / 2)
        shuffled_instance = instance.shuffle()
        train_samples = shuffled_instance[split_:]
        # 确定训练集最大帧数,留作样本平衡使用。
        train_samples.recompute_total()
        train_samples.set_name(name)

        test_samples = shuffled_instance[:split_]
        test_samples.set_name(name)

        train_list.append(train_samples)
        test_list.append(test_samples)

    return train_list, test_list
Esempio n. 5
0
def Run():
    with open('sys_config.json', encoding='UTF-8') as file:
        data = json.load(file)
    src_path = data['src_path']
    dst_path = data['dst_path']
    hmm_param = data['hmm_param']
    hmm_model_path = data['hmm_model']
    seg = hmm_param['seg']  # hmm分段
    nw = hmm_param['nw']  # 帧长
    n_mfcc = hmm_param['n_mfcc']  # mfcc维数
    # hmm 加载初始化
    print("loading hmm models")
    hmms = hmm_optical_sensing.hmms()
    model_list = common.find_ext_files(hmm_model_path, ext='.npy')
    for model_file in model_list:
        hmms.load_one_model(model_file)  # 加载模型
    print("hmm models is loaded.")
    # 根据类别名创建文件夹
    print("building folder for alarm audio")
    for name in hmms.model_name:
        dir = os.path.join(dst_path, name)
        common.mkdir(dir)
    print("folder build.")

    # SQL server 初始化
    sql_param = data['sql_param']
    isconnect = int(sql_param['isconnect'])
    if isconnect == 1:
        host = sql_param['host']
        user = sql_param['user']
        pwd = sql_param['pwd']
        db = sql_param['db']
        table = sql_param['table']
        ms = MsSQL(host=host, user=user, pwd=pwd, db=db)
        print('isconnect==1! the alarm will be insert to the SQL server!')
    elif isconnect == 0:
        ms = None
        table = 'empty'
        print('isconnect==0! the alarm will not be insert to the SQL server!')
    else:
        raise ValueError('isconnect value error! it should be 0 or 1!')

    # ms.InsertAlarm(' ', ' ', ' ', ' ')
    print("Detecting", end='')
    count = 0
    while True:
        count += 1
        if count % 5 == 0:
            # print('\b\b\b\b', end='')
            # print('    ', end='')
            # print('\b\b\b\b', end='')
            print("\rDetecting", end='')
        else:
            print('.', end='')
        sys.stdout.flush()
        wav_list = common.find_ext_files(src_path, ext='.wav')
        time.sleep(1)
        for wav in wav_list:
            filename = wav.split('\\')[-1]
            try:
                predict_result = hmms.predict_wav(wav,
                                                  seg=seg,
                                                  nw=nw,
                                                  n_mfcc=n_mfcc)
            except Exception as e:
                print('\rfile %s detection error %s' % (filename, e))
                continue
            result = hmms.model_name[predict_result]
            audio_save_path = os.path.join(dst_path, result, filename)
            shutil.move(wav, audio_save_path)
            # print("Event Occur: %s---%s" % (filename, result))
            print(("\rEvent Occur: %s---%s" % (filename, result)), end=' ')
            sys.stdout.flush()
            # 添加到数据库
            if ms is not None:
                date = filename.split('.')[0]
                # ms.InsertAlarm(table, date=date, alarmtype=result, audio_save_path=audio_save_path)
                ms.UpdateAlarm(table,
                               date=date,
                               alarmtype=result,
                               audio_save_path=audio_save_path)
                print('写入数据库')
            else:
                print('')
        # 确保当前list的wav文件已被处理,不被重复处理。
        for wav in wav_list:
            if os.path.exists(wav):
                os.remove(wav)