Esempio n. 1
0
def create_adset(data, group, platform, basic_data):
    json_data = {
        "name": common.get_name(group, platform),
        "status": "ACTIVE",
        "daily_budget": 1000,
        "bid_amount": int(os.environ['bid_amount']),
        "campaign_id": data['campaign_id'],
        "bid_strategy": "LOWEST_COST_WITH_BID_CAP",
        "billing_event": "IMPRESSIONS",
        "attribution_spec": [{
            "event_type": "CLICK_THROUGH",
            "window_days": 7
        }],
        "optimization_goal": "OFFSITE_CONVERSIONS",
        "promoted_object": {
            "application_id": "634204786734953",
            "object_store_url":
            basic_data['object_store_url'][platform.lower()],
            "custom_event_type": "PURCHASE"
        },
        "targeting": data['targeting'],
        "access_token": os.environ['access_token']
    }
    res = requests.post(common.get_adset_url(), json=json_data)
    out = json.loads(res.text)
    res.close()
    if 'id' in out:
        return out['id']
    else:
        return None
Esempio n. 2
0
def create_ad(adset_id, group, platform, videos):
    global tindex
    video = videos[tindex % len(videos)]
    link = "http://play.google.com/store/apps/details?id=com.tap4fun.brutalage_test"
    if platform.lower() == 'ios' or 'ios' in platform.lower():
        link = "https://itunes.apple.com/app/id1156787368"
    json_data = {
        "name": common.get_name(group, platform),
        "adset_id": adset_id,
        "status": "ACTIVE",
        "creative": {
            "object_story_spec": {
                "page_id": "1643949305846284",
                "video_data": {
                    "video_id": video['videoid'],
                    "message": video['message'],
                    "call_to_action": {
                        "type": "INSTALL_MOBILE_APP",
                        "value": {
                            "application": "634204786734953",
                            "link": link
                        }
                    },
                    "image_url": video['image_url']
                }
            }
        },
        "access_token": os.environ['access_token']
    }
    res = requests.post(common.get_ad_url(), json=json_data)
    res.close()
    out = json.loads(res.text)
    tindex += 1
    if 'id' in out:
        return out['id']
    else:
        return None
Esempio n. 3
0
is_iid = False
model = "CNN"
E = 1

project_name = f"{model}{NC}c{E}e{max_rounds}r{n_clients_per_round}f-{server_opt}-{client_opt_strategy[0]}-{client_opt}-scf"

client_lr_lg = -0.5
server_lr_lg = 0

for client_lr_lg in np.arange(-1.5, 1.0, 0.5):
    client_lr = 10**client_lr_lg
    for server_lr_lg in np.arange(-1, 1.5, 0.5):
        server_lr = 10**server_lr_lg
        config = TorchFederatedLearnerEMNISTConfig(
            CLIENT_LEARNING_RATE=client_lr,
            CLIENT_OPT=common.get_name(client_opt),
            CLIENT_OPT_ARGS=common.get_args(client_opt),
            # CLIENT_OPT_L2=1e-4,
            CLIENT_OPT_STRATEGY=client_opt_strategy,
            SERVER_OPT=common.get_name(server_opt),
            SERVER_OPT_ARGS=common.get_args(server_opt),
            SERVER_LEARNING_RATE=server_lr,
            IS_IID_DATA=is_iid,
            BATCH_SIZE=B,
            CLIENT_FRACTION=C,
            N_CLIENTS=NC,
            N_EPOCH_PER_CLIENT=E,
            MAX_ROUNDS=max_rounds,
            MODEL=model,
            SCAFFOLD=True)
        config_technical = TorchFederatedLearnerTechnicalConfig(