Esempio n. 1
0
def smallest_multiple(n):
    primes = get_primes(n);
    result = 1
    for i in primes:
        temp = i
        while temp <= n:
            result *= i
            temp *= i
    return result
Esempio n. 2
0
def smallest_multiple(n):
    primes = get_primes(n)
    result = 1
    for i in primes:
        temp = i
        while temp <= n:
            result *= i
            temp *= i
    return result
Esempio n. 3
0
def find_solution(n, start=1):
    primes = get_primes(10**n)
    prime_set = set(primes)
    for i in primes:
        if i <= start:
            continue
        for j in range(1, int(10**(n - 1) * 9 / 2)):
            if i + j > 10 ** n or i + 2 * j > 10 ** n or i + j not in prime_set or i + 2 * j not in prime_set or \
                    origin_sequence(i) != origin_sequence(i + j) or origin_sequence(i) != origin_sequence(i + 2 * j):
                continue
            return str(i) + str(i + j) + str(i + 2 * j)
    return 0
Esempio n. 4
0
def find_solution(n, start=1):
    primes = get_primes(10 ** n)
    prime_set = set(primes)
    for i in primes:
        if i <= start:
            continue
        for j in range(1, int(10 ** (n - 1) * 9 / 2)):
            if i + j > 10 ** n or i + 2 * j > 10 ** n or i + j not in prime_set or i + 2 * j not in prime_set or \
                    origin_sequence(i) != origin_sequence(i + j) or origin_sequence(i) != origin_sequence(i + 2 * j):
                continue
            return str(i) + str(i + j) + str(i + 2 * j)
    return 0
Esempio n. 5
0
                flag = False
                break
        if flag:
            present.append(primes[i])
            result = _solution(primes, i + 1, present, k)
            if result:
                return result
            present.pop()


def solution(primes, k):
    for i in range(0, len(primes)):
        present = [primes[i]]
        result = _solution(primes, i + 1, present, k)
        if result:
            return result
        present.pop()




if __name__ == "__main__":
    n = 10000
    primes = get_primes(n)
    assert solution(primes, 4) == [3, 7, 109, 673]
    result = solution(primes, 5)
    print(result, sum(result))



Esempio n. 6
0
from common import is_pandigital, get_primes

if __name__ == "__main__":
    """8位和9位的数能被3整除,所以直接找从7位的开始找, 7位的直接从7开头的开始找"""
    n = 10**6 * 8
    PRIMES = set(get_primes(n))
    while True:
        if n in PRIMES and is_pandigital(n, 7):
            break
        n -= 1
    print(n)
Esempio n. 7
0
from common import get_primes
n = 10 ** 5
COINS = get_primes(n)


summation = {}
def prime_summation(n):
    return _prime_summation(n, n)


def _prime_summation(n, maximum):
    key = '{}-{}'.format(n, maximum)
    if key in summation:
        return summation[key]
    if n < 0:
        return 0
    if n == 0:
        return 1
    value = sum(_prime_summation(n - i, i) for i in COINS if i <= maximum)
    summation[key] = value
    return value


if __name__ == "__main__":
    assert prime_summation(10) == 5
    for i in range(1, n):
        if prime_summation(i) >= 5000:
            print(i)
            break

Esempio n. 8
0
#coding:utf-8
'''
Created on 2016年1月3日

@author: robinjia
@email: [email protected]
'''

from common import get_primes

if __name__ == "__main__":
    print(sum(get_primes(2000000)))
Esempio n. 9
0
from common import prime_factor, get_primes

PRIMES = set(get_primes(10 ** 8))


def find_smallest(t):
    i = 1
    while True:
        if i in PRIMES:
            i += 1
            continue
        flag = True
        for j in range(0, t):
            if i + j in PRIMES or len(prime_factor(i + j)) != t:
                flag = False
                break
        if flag:
            return i
        i += 1


if __name__ == "__main__":
    assert find_smallest(2) == 14
    assert find_smallest(3) == 644
    print(find_smallest(4))
Esempio n. 10
0
from common import get_primes

MAXIMUM = 1000000
PRIMES = set(get_primes(MAXIMUM))


def is_circular_prime(n):
    for i in range(0, len(str(n))):
        if int(str(n)[i:n] + str(n)[0:i]) not in PRIMES:
            return False
    return True


if __name__ == "__main__":
    assert is_circular_prime(719) == True
    n = 1000000
    print(len([i for i in range(1, n) if is_circular_prime(i)]))
Esempio n. 11
0
from common import get_primes

PRIMES = set(get_primes(10000000))


def quadratic_prime(a, b):
    i = 0
    while True:
        s = i**2 + a * i + b
        if s not in PRIMES:
            return i
        i += 1


if __name__ == "__main__":
    n = 1000
    a = 0
    b = 0
    maximum = 0
    for i in range(-n + 1, n):
        for j in range(-n, n + 1):
            print(i, j)
            temp = quadratic_prime(i, j)
            if temp > maximum:
                maximum = temp
                a = i
                b = j
    print(a, b, a * b)
Esempio n. 12
0
from common import get_primes

PRIMES = set(get_primes(10000000))
def quadratic_prime(a, b):
    i = 0
    while True:
        s = i ** 2 + a * i + b
        if s not in PRIMES:
            return i
        i += 1

if __name__ == "__main__":
    n = 1000
    a = 0
    b = 0
    maximum = 0
    for i in range(-n + 1, n):
        for j in range(-n, n + 1):
            print(i, j)
            temp = quadratic_prime(i, j)
            if temp > maximum:
                maximum = temp
                a = i
                b = j
    print(a, b, a * b)

Esempio n. 13
0
from common import get_primes

n = 10**7
primes = set(get_primes(n))


def truncatable_prime(n):
    n = str(n)
    for i in range(1, len(n)):
        if int(n[0:i]) not in primes:
            return False
        if int(n[-i:]) not in primes:
            return False
    return int(n) in primes


if __name__ == "__main__":
    assert truncatable_prime(3797) == True
    s = [i for i in range(10, n) if truncatable_prime(i)]
    print(s, sum(s))
Esempio n. 14
0
from common import get_primes
MAXIMUM = 1000000
PRIMES = set(get_primes(MAXIMUM))

def is_circular_prime(n):
    for i in range(0, len(str(n))):
        if int(str(n)[i:n] + str(n)[0:i]) not in PRIMES:
            return False
    return True

if __name__ == "__main__":
    assert is_circular_prime(719) == True
    n = 1000000
    print(len([i for i in range(1, n) if is_circular_prime(i)]))



Esempio n. 15
0
from common import get_primes

if __name__ == "__main__":
    n = 1000000
    primes = get_primes(n)
    p = 1
    for i in primes:
        if p * i > n:
            break
        p = p * i
    print(p)
Esempio n. 16
0
from common import is_pandigital, get_primes

if __name__ == "__main__":
    """8位和9位的数能被3整除,所以直接找从7位的开始找, 7位的直接从7开头的开始找"""
    n = 10 ** 6 * 8
    PRIMES = set(get_primes(n))
    while True:
        if n in PRIMES and is_pandigital(n, 7):
            break
        n -= 1
    print(n)