Esempio n. 1
0
def parallel_self_attention(model_parallel_size, num_att_heads_per_partition,
                            hidden_size_per_att_head, dropout_prob, batch_size,
                            sequence_length):
    mpu.initialize_model_parallel(model_parallel_size)
    model_parallel_size = mpu.get_model_parallel_world_size()

    seed = 12345
    set_random_seed(seed)

    num_att_heads = num_att_heads_per_partition * \
                    torch.distributed.get_world_size()
    hidden_size = hidden_size_per_att_head * num_att_heads

    # Network
    identity_layer = IdentityLayer3D(batch_size, sequence_length,
                                     hidden_size).cuda()
    attention_layer = mpu.BertParallelSelfAttention(hidden_size, num_att_heads,
                                                    dropout_prob).cuda()
    loss_weight = torch.randn([batch_size, sequence_length,
                               hidden_size]).cuda()
    attention_mask = torch.randn([batch_size, 1, 1, sequence_length]).cuda()
    # Forward
    input_ = identity_layer()
    output = attention_layer(input_, attention_mask)
    loss = torch.mul(output, loss_weight).sum()
    # Backward
    loss.backward()

    rank = mpu.get_model_parallel_rank()
    mpu.destroy_model_parallel()
    return rank, hidden_size, model_parallel_size, loss, \
        attention_layer, identity_layer
Esempio n. 2
0
def mpu_cross_entropy(batch_size, seq_length, vocab_size, logits_scale, seed):
    set_random_seed(seed)
    identity = IdentityLayer((batch_size, seq_length, vocab_size),
                             scale=logits_scale).cuda()
    logits = identity()
    logits_parallel = mpu.scatter_to_model_parallel_region(logits)
    target = torch.cuda.LongTensor(size=(batch_size,
                                         seq_length)).random_(0, vocab_size)
    loss = vocab_parallel_cross_entropy(logits_parallel, target).mean()
    loss.backward()
    return loss, identity.weight.grad
Esempio n. 3
0
def torch_cross_entropy(batch_size, seq_length, vocab_size, logits_scale,
                        seed):
    set_random_seed(seed)
    identity = IdentityLayer((batch_size, seq_length, vocab_size),
                             scale=logits_scale).cuda()
    logits = identity()
    target = torch.cuda.LongTensor(size=(batch_size,
                                         seq_length)).random_(0, vocab_size)
    loss = F.cross_entropy(logits.view(-1,
                                       logits.size()[-1]),
                           target.view(-1),
                           reduction='none').view_as(target).mean()
    loss.backward()
    return loss, identity.weight.grad
Esempio n. 4
0
def parallel_transformer(model_parallel_size, num_att_heads_per_partition,
                         hidden_size_per_att_head, batch_size,
                         sequence_length):

    mpu.initialize_model_parallel(model_parallel_size)
    model_parallel_size = mpu.get_model_parallel_world_size()

    seed = 12345
    set_random_seed(seed)

    num_att_heads = num_att_heads_per_partition * \
                    torch.distributed.get_world_size()
    hidden_size = hidden_size_per_att_head * num_att_heads
    intermediate_size = 4 * hidden_size

    # Network
    identity_layer = IdentityLayer3D(batch_size, sequence_length,
                                     hidden_size).cuda()
    transformer_layer = mpu.BertParallelTransformerLayer(
        hidden_size, intermediate_size, num_att_heads, 0.0, 0.0,
        torch.nn.functional.relu, 1.0e-5).cuda()

    loss_weight = torch.randn([batch_size, sequence_length,
                               hidden_size]).cuda()
    attention_mask = torch.randn([batch_size, 1, 1, sequence_length]).cuda()
    # Forward
    input_ = identity_layer()
    output = transformer_layer(input_, attention_mask)
    loss = torch.mul(output, loss_weight).sum()
    # Backward
    loss.backward()

    rank = mpu.get_model_parallel_rank()
    mpu.destroy_model_parallel()
    return rank, hidden_size, model_parallel_size, loss, \
        transformer_layer, identity_layer
Esempio n. 5
0
def test_parallel_embedding(model_parallel_size):

    if torch.distributed.get_rank() == 0:
        print('> testing parallel embedding with model parallel size {} ...'.
              format(model_parallel_size))

    mpu.initialize_model_parallel(model_parallel_size)
    model_parallel_size = mpu.get_model_parallel_world_size()

    batch_size = 17
    seq_length = 23
    vocab_size = 48
    hidden_size = 16
    seed = 1236

    set_random_seed(123)
    input_data = torch.LongTensor(size=(batch_size, seq_length)).random_(
        0, vocab_size).cuda()
    loss_weight = torch.randn([batch_size, seq_length, hidden_size]).cuda()

    set_random_seed(seed)
    embedding_original = torch.nn.Embedding(vocab_size, hidden_size).cuda()

    output = embedding_original(input_data)
    loss_original = torch.mul(output, loss_weight).sum()
    loss_original.backward()

    set_random_seed(seed)
    embedding_parallel = layers.ParallelEmbedding(
        vocab_size, hidden_size, init_method=init.normal_).cuda()
    output = embedding_parallel(input_data)
    loss_parallel = torch.mul(output, loss_weight).sum()
    loss_parallel.backward()

    set_random_seed(seed)
    embedding_vocab_parallel = layers.VocabParallelEmbedding(
        vocab_size, hidden_size, init_method=init.normal_).cuda()
    output = embedding_vocab_parallel(input_data)
    loss_vocab_parallel = torch.mul(output, loss_weight).sum()
    loss_vocab_parallel.backward()

    torch.distributed.barrier()
    error = loss_parallel.sub(loss_original).abs()
    print('   error in loss (parallel) on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-12, 'error: {}'.format(error)

    torch.distributed.barrier()
    error = loss_vocab_parallel.sub(loss_original).abs()
    print('   error in loss (vocab parallel) on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-12, 'error: {}'.format(error)

    weight_grad_orig = torch.split(embedding_original.weight.grad,
                                   hidden_size // model_parallel_size,
                                   1)[mpu.get_model_parallel_rank()]
    error = embedding_parallel.weight.grad.sub(weight_grad_orig).abs().max()
    print('   error in grad (parallel) on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-12, 'error: {}'.format(error)

    weight_grad_orig = torch.split(embedding_original.weight.grad,
                                   vocab_size // model_parallel_size,
                                   0)[mpu.get_model_parallel_rank()]
    error = embedding_vocab_parallel.weight.grad.sub(
        weight_grad_orig).abs().max()
    print('   error in grad (vocab parallel) on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-12, 'error: {}'.format(error)

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print('>> passed the test :-)')
Esempio n. 6
0
def test_row_parallel_linear(model_parallel_size):

    mpu.initialize_model_parallel(model_parallel_size)
    if torch.distributed.get_rank() == 0:
        print('> testing RowParallelLinear with model parallel '
              'size: {}'.format(model_parallel_size))
    model_parallel_size = mpu.get_model_parallel_world_size()

    seed = 12345
    set_random_seed(seed)
    input_size_coeff = 13
    input_size = input_size_coeff * model_parallel_size
    output_size_coeff = 17
    output_size = output_size_coeff * model_parallel_size
    batch_size = 7

    # Network
    identity_layer = IdentityLayer2D(batch_size, input_size).cuda()
    linear_layer = mpu.RowParallelLinear(
        input_size, output_size, keep_master_weight_for_test=True).cuda()
    loss_weight = torch.randn([batch_size, output_size]).cuda()
    # Forward
    input_ = identity_layer()
    output = linear_layer(input_)
    loss = torch.mul(output, loss_weight).sum()
    # Backward
    loss.backward()

    # Values.
    dLdY = loss_weight
    X = identity_layer.weight
    A = linear_layer.master_weight.cuda()
    dLdA = torch.matmul(dLdY.t(), X)
    dLdb = torch.matmul(torch.ones(batch_size, 1).cuda().t(), dLdY).view(-1)
    dLdX = torch.matmul(dLdY, A)

    rank = mpu.get_model_parallel_rank()
    my_dLdA = torch.split(dLdA, input_size_coeff,
                          dim=1)[rank].contiguous().clone()
    error = my_dLdA.sub(linear_layer.weight.grad).abs().max()
    torch.distributed.barrier()
    print('   error in dLdA on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    error = dLdb.sub(linear_layer.bias.grad).abs().max()
    torch.distributed.barrier()
    print('   error in dLdb on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    error = dLdX.sub(identity_layer.weight.grad).abs().max()
    torch.distributed.barrier()
    print('   error in dLdX on global rank {}: {}'.format(
        torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print(' >> passed the test :-)')
Esempio n. 7
0
def test_initialize_affine_weight(model_parallel_size):

    mpu.initialize_model_parallel(model_parallel_size)
    if torch.distributed.get_rank() == 0:
        print('> testing initialize_affine_weight with model parallel '
              'size: {}'.format(model_parallel_size))
    model_parallel_size = mpu.get_model_parallel_world_size()

    seed = 12345
    input_size_coeff = 13
    input_size = input_size_coeff * model_parallel_size
    output_size_coeff = 17
    output_size = output_size_coeff * model_parallel_size

    # ---------------
    # Column parallel
    # ---------------
    weight = torch.empty(output_size_coeff, input_size)
    set_random_seed(seed)
    layers._initialize_affine_weight(weight, output_size, input_size,
                                     output_size_coeff, 0,
                                     torch.nn.init.normal_)
    # Target.
    set_random_seed(seed)
    master_weight = torch.empty(output_size, input_size)
    torch.nn.init.normal_(master_weight)
    rank = mpu.get_model_parallel_rank()
    my_weight = torch.split(master_weight, output_size_coeff,
                            dim=0)[rank].contiguous().clone()

    # Compare.
    error = weight.sub(my_weight).abs().max()
    torch.distributed.barrier()
    print('   column parallel max error (should be zero) on global rank '
          '{}: {}'.format(torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    # ------------
    # Row parallel
    # ------------
    weight = torch.empty(output_size, input_size_coeff)
    set_random_seed(seed)
    mpu.layers._initialize_affine_weight(weight, output_size, input_size,
                                         input_size_coeff, 1,
                                         torch.nn.init.normal_)
    # Target.
    set_random_seed(seed)
    master_weight = torch.empty(output_size, input_size)
    torch.nn.init.normal_(master_weight)
    rank = mpu.get_model_parallel_rank()
    my_weight = torch.split(master_weight, input_size_coeff,
                            dim=1)[rank].contiguous().clone()

    # Compare.
    error = weight.sub(my_weight).abs().max()
    torch.distributed.barrier()
    print('   row parallel max error (should be zero) on global rank '
          '{}: {}'.format(torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print(' >> passed the test :-)')