Esempio n. 1
0
    def flatten(cls, seq):
        """Return commutative, noncommutative and order arguments by
        combining related terms.

        ** Developer Notes **
            * In an expression like ``a*b*c``, python process this through sympy
              as ``Mul(Mul(a, b), c)``. This can have undesirable consequences.

              -  Sometimes terms are not combined as one would like:
                 {c.f. http://code.google.com/p/sympy/issues/detail?id=1497}

                >>> from sympy import Mul, sqrt
                >>> from sympy.abc import x, y, z
                >>> 2*(x + 1) # this is the 2-arg Mul behavior
                2*x + 2
                >>> y*(x + 1)*2
                2*y*(x + 1)
                >>> 2*(x + 1)*y # 2-arg result will be obtained first
                y*(2*x + 2)
                >>> Mul(2, x + 1, y) # all 3 args simultaneously processed
                2*y*(x + 1)
                >>> 2*((x + 1)*y) # parentheses can control this behavior
                2*y*(x + 1)

                Powers with compound bases may not find a single base to
                combine with unless all arguments are processed at once.
                Post-processing may be necessary in such cases.
                {c.f. http://code.google.com/p/sympy/issues/detail?id=2629}

                >>> a = sqrt(x*sqrt(y))
                >>> a**3
                (x*sqrt(y))**(3/2)
                >>> Mul(a,a,a)
                (x*sqrt(y))**(3/2)
                >>> a*a*a
                x*sqrt(y)*sqrt(x*sqrt(y))
                >>> _.subs(a.base, z).subs(z, a.base)
                (x*sqrt(y))**(3/2)

              -  If more than two terms are being multiplied then all the
                 previous terms will be re-processed for each new argument.
                 So if each of ``a``, ``b`` and ``c`` were :class:`Mul`
                 expression, then ``a*b*c`` (or building up the product
                 with ``*=``) will  process all the arguments of ``a`` and
                 ``b`` twice: once when ``a*b`` is computed and again when
                 ``c`` is multiplied.

                 Using ``Mul(a, b, c)`` will process all arguments once.

            * The results of Mul are cached according to arguments, so flatten
              will only be called once for ``Mul(a, b, c)``. If you can
              structure a calculation so the arguments are most likely to be
              repeats then this can save time in computing the answer. For
              example, say you had a Mul, M, that you wished to divide by ``d[i]``
              and multiply by ``n[i]`` and you suspect there are many repeats
              in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather
              than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the
              product, ``M*n[i]`` will be returned without flattening -- the
              cached value will be returned. If you divide by the ``d[i]``
              first (and those are more unique than the ``n[i]``) then that will
              create a new Mul, ``M/d[i]`` the args of which will be traversed
              again when it is multiplied by ``n[i]``.

              {c.f. http://code.google.com/p/sympy/issues/detail?id=2607}

              This consideration is moot if the cache is turned off.

            NB
              The validity of the above notes depends on the implementation
              details of Mul and flatten which may change at any time. Therefore,
              you should only consider them when your code is highly performance
              sensitive.

        """
        # apply associativity, separate commutative part of seq
        c_part = []         # out: commutative factors
        nc_part = []        # out: non-commutative factors

        nc_seq = []

        coeff = S.One       # standalone term
                            # e.g. 3 * ...

        c_powers = []       # (base,exp)      n
                            # e.g. (x,n) for x

        num_exp = []        # (num-base, exp)           y
                            # e.g.  (3, y)  for  ... * 3  * ...

        neg1e = 0           # exponent on -1 extracted from Number-based Pow

        pnum_rat = {}       # (num-base, Rat-exp)          1/2
                            # e.g.  (3, 1/2)  for  ... * 3     * ...

        order_symbols = None



        # --- PART 1 ---
        #
        # "collect powers and coeff":
        #
        # o coeff
        # o c_powers
        # o num_exp
        # o neg1e
        # o pnum_rat
        #
        # NOTE: this is optimized for all-objects-are-commutative case

        for o in seq:
            # O(x)
            if o.is_Order:
                o, order_symbols = o.as_expr_variables(order_symbols)

            # Mul([...])
            if o.is_Mul:
                if o.is_commutative:
                    seq.extend(o.args)    # XXX zerocopy?

                else:
                    # NCMul can have commutative parts as well
                    for q in o.args:
                        if q.is_commutative:
                            seq.append(q)
                        else:
                            nc_seq.append(q)

                    # append non-commutative marker, so we don't forget to
                    # process scheduled non-commutative objects
                    seq.append(NC_Marker)

                continue

            # 3
            elif o.is_Number:
                if o is S.NaN or coeff is S.ComplexInfinity and o is S.Zero:
                    # we know for sure the result will be nan
                    return [S.NaN], [], None
                elif coeff.is_Number: # it could be zoo
                    coeff *= o
                    if coeff is S.NaN:
                        # we know for sure the result will be nan
                        return [S.NaN], [], None
                continue

            elif o is S.ComplexInfinity:
                if not coeff or coeff is S.ComplexInfinity:
                    # we know for sure the result will be nan
                    return [S.NaN], [], None
                coeff = S.ComplexInfinity
                continue

            elif o.is_commutative:
                #      e
                # o = b
                b, e = o.as_base_exp()

                #  y
                # 3
                if o.is_Pow and b.is_Number:

                    # get all the factors with numeric base so they can be
                    # combined below, but don't combine negatives unless
                    # the exponent is an integer
                    if e.is_Rational:
                        if e.is_Integer:
                            coeff *= Pow(b, e) # it is an unevaluated power
                            continue
                        elif e.is_negative:    # also a sign of an unevaluated power
                            seq.append(Pow(b, e))
                            continue
                        elif b.is_negative:
                            neg1e += e
                            b = -b
                        if b is not S.One:
                            pnum_rat.setdefault(b, []).append(e)
                        continue
                    elif b.is_positive or e.is_integer:
                        num_exp.append((b, e))
                        continue
                c_powers.append((b,e))

            # NON-COMMUTATIVE
            # TODO: Make non-commutative exponents not combine automatically
            else:
                if o is not NC_Marker:
                    nc_seq.append(o)

                # process nc_seq (if any)
                while nc_seq:
                    o = nc_seq.pop(0)
                    if not nc_part:
                        nc_part.append(o)
                        continue

                    #                             b    c       b+c
                    # try to combine last terms: a  * a   ->  a
                    o1 = nc_part.pop()
                    b1,e1 = o1.as_base_exp()
                    b2,e2 = o.as_base_exp()
                    new_exp = e1 + e2
                    # Only allow powers to combine if the new exponent is
                    # not an Add. This allow things like a**2*b**3 == a**5
                    # if a.is_commutative == False, but prohibits
                    # a**x*a**y and x**a*x**b from combining (x,y commute).
                    if b1==b2 and (not new_exp.is_Add):
                        o12 = b1 ** new_exp

                        # now o12 could be a commutative object
                        if o12.is_commutative:
                            seq.append(o12)
                            continue
                        else:
                            nc_seq.insert(0, o12)

                    else:
                        nc_part.append(o1)
                        nc_part.append(o)

        # We do want a combined exponent if it would not be an Add, such as
        #  y    2y     3y
        # x  * x   -> x
        # We determine this if two exponents have the same term in as_coeff_mul
        #
        # Unfortunately, this isn't smart enough to consider combining into
        # exponents that might already be adds, so things like:
        #  z - y    y
        # x      * x  will be left alone.  This is because checking every possible
        # combination can slow things down.

        # gather exponents of common bases...
        # in c_powers
        new_c_powers = []
        common_b = {} # b:e
        for b, e in c_powers:
            co = e.as_coeff_mul()
            common_b.setdefault(b, {}).setdefault(co[1], []).append(co[0])
        for b, d in common_b.items():
            for di, li in d.items():
                d[di] = Add(*li)
        for b, e in common_b.items():
            for t, c in e.items():
                new_c_powers.append((b, c*Mul(*t)))
        c_powers = new_c_powers

        # and in num_exp
        new_num_exp = []
        common_b = {} # b:e
        for b, e in num_exp:
            co = e.as_coeff_mul()
            common_b.setdefault(b, {}).setdefault(co[1], []).append(co[0])
        for b, d in common_b.items():
            for di, li in d.items():
                d[di] = Add(*li)
        for b, e in common_b.items():
            for t, c in e.items():
                new_num_exp.append((b,c*Mul(*t)))
        num_exp = new_num_exp

        # --- PART 2 ---
        #
        # o process collected powers  (x**0 -> 1; x**1 -> x; otherwise Pow)
        # o combine collected powers  (2**x * 3**x -> 6**x)
        #   with numeric base

        # ................................
        # now we have:
        # - coeff:
        # - c_powers:    (b, e)
        # - num_exp:     (2, e)
        # - pnum_rat:    {(1/3, [1/3, 2/3, 1/4])}

        #  0             1
        # x  -> 1       x  -> x
        for b, e in c_powers:
            if e is S.One:
                if b.is_Number:
                    coeff *= b
                else:
                    c_part.append(b)
            elif not e is S.Zero:
                c_part.append(Pow(b, e))

        #  x    x     x
        # 2  * 3  -> 6
        inv_exp_dict = {}   # exp:Mul(num-bases)     x    x
                            # e.g.  x:6  for  ... * 2  * 3  * ...
        for b, e in num_exp:
            inv_exp_dict.setdefault(e, []).append(b)
        for e, b in inv_exp_dict.items():
            inv_exp_dict[e] = Mul(*b)
        c_part.extend([Pow(b, e) for e, b in inv_exp_dict.iteritems() if e])

        # b, e -> e, b
        # {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])}
        comb_e = {}
        for b, e in pnum_rat.iteritems():
            comb_e.setdefault(Add(*e), []).append(b)
        del pnum_rat
        # process them, reducing exponents to values less than 1
        # and updating coeff if necessary else adding them to
        # num_rat for further processing
        num_rat = []
        for e, b in comb_e.iteritems():
            b = Mul(*b)
            if e.q == 1:
                coeff *= Pow(b, e)
                continue
            if e.p > e.q:
                e_i, ep = divmod(e.p, e.q)
                coeff *= Pow(b, e_i)
                e = Rational(ep, e.q)
            num_rat.append((b, e))
        del comb_e

        # extract gcd of bases in num_rat
        # 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4)
        pnew = {}
        i = 0 # steps through num_rat which may grow
        while i < len(num_rat):
            bi, ei = num_rat[i]
            grow = []
            for j in range(i + 1, len(num_rat)):
                bj, ej = num_rat[j]
                g = igcd(bi, bj)
                if g != 1:
                    # 4**r1*6**r2 -> 2**(r1+r2)  *  2**r1 *  3**r2
                    # this might have a gcd with something else
                    e = ei + ej
                    if e.q == 1:
                        coeff *= Pow(g, e)
                    else:
                        if e.p > e.q:
                            e_i, ep = divmod(e.p, e.q) # change e in place
                            coeff *= Pow(g, e_i)
                            e = Rational(ep, e.q)
                        grow.append((g, e))
                    # update the jth item
                    num_rat[j] = (bj//g, ej)
                    # update bi that we are checking with
                    bi = bi//g
                    if bi is S.One:
                        break
            if bi is not S.One:
                obj = Pow(bi, ei)
                if obj.is_Number:
                    coeff *= obj
                else:
                    if obj.is_Mul: # sqrt(12) -> 2*sqrt(3)
                        c, obj = obj.args # expecting only 2 args
                        coeff *= c
                        assert obj.is_Pow
                        bi, ei = obj.args
                    pnew.setdefault(ei, []).append(bi)

            num_rat.extend(grow)
            i += 1

        # combine bases of the new powers
        for e, b in pnew.iteritems():
            pnew[e] = Mul(*b)

        # see if there is a base with matching coefficient
        # that the -1 can be joined with
        if neg1e:
            p = Pow(S.NegativeOne, neg1e)
            if p.is_Number:
                coeff *= p
            else:
                if p.is_Mul:
                    c, p = p.args
                    coeff *= c
                    assert p.is_Pow and p.base is S.NegativeOne
                    neg1e = p.args[1]
                for e, b in pnew.iteritems():
                    if e == neg1e and b.is_positive:
                        pnew[e] = -b
                        break
                else:
                    c_part.append(p)

        # add all the pnew powers
        c_part.extend([Pow(b, e) for e, b in pnew.iteritems()])

        # oo, -oo
        if (coeff is S.Infinity) or (coeff is S.NegativeInfinity):
            new_c_part = []
            coeff_sign = 1
            for t in c_part:
                if t.is_positive:
                    continue
                if t.is_negative:
                    coeff_sign *= -1
                    continue
                new_c_part.append(t)
            c_part = new_c_part
            new_nc_part = []
            for t in nc_part:
                if t.is_positive:
                    continue
                if t.is_negative:
                    coeff_sign *= -1
                    continue
                new_nc_part.append(t)
            nc_part = new_nc_part
            coeff *= coeff_sign

        # zoo
        if coeff is S.ComplexInfinity:
            # zoo might be
            #   unbounded_real + bounded_im
            #   bounded_real + unbounded_im
            #   unbounded_real + unbounded_im
            # and non-zero real or imaginary will not change that status.
            c_part = [c for c in c_part if not (c.is_nonzero and
                                                c.is_real is not None)]
            nc_part = [c for c in nc_part if not (c.is_nonzero and
                                                  c.is_real is not None)]

        # 0
        elif coeff is S.Zero:
            # we know for sure the result will be 0
            return [coeff], [], order_symbols

        # order commutative part canonically
        c_part.sort(key=cmp_to_key(Basic.compare))

        # current code expects coeff to be always in slot-0
        if coeff is not S.One:
            c_part.insert(0, coeff)


        # we are done
        if len(c_part)==2 and c_part[0].is_Number and c_part[1].is_Add:
            # 2*(1+a) -> 2 + 2 * a
            coeff = c_part[0]
            c_part = [Add(*[coeff*f for f in c_part[1].args])]

        return c_part, nc_part, order_symbols
Esempio n. 2
0
    def flatten(cls, seq):

        # apply associativity, separate commutative part of seq
        c_part = []         # out: commutative factors
        nc_part = []        # out: non-commutative factors

        nc_seq = []

        coeff = S.One       # standalone term
                            # e.g. 3 * ...

        c_powers = []       # (base,exp)      n
                            # e.g. (x,n) for x

        num_exp = []        # (num-base, exp)           y
                            # e.g.  (3, y)  for  ... * 3  * ...

        neg1e = 0           # exponent on -1 extracted from Number-based Pow

        pnum_rat = {}       # (num-base, Rat-exp)          1/2
                            # e.g.  (3, 1/2)  for  ... * 3     * ...

        order_symbols = None



        # --- PART 1 ---
        #
        # "collect powers and coeff":
        #
        # o coeff
        # o c_powers
        # o num_exp
        # o neg1e
        # o pnum_rat
        #
        # NOTE: this is optimized for all-objects-are-commutative case

        for o in seq:
            # O(x)
            if o.is_Order:
                o, order_symbols = o.as_expr_variables(order_symbols)

            # Mul([...])
            if o.is_Mul:
                if o.is_commutative:
                    seq.extend(o.args)    # XXX zerocopy?

                else:
                    # NCMul can have commutative parts as well
                    for q in o.args:
                        if q.is_commutative:
                            seq.append(q)
                        else:
                            nc_seq.append(q)

                    # append non-commutative marker, so we don't forget to
                    # process scheduled non-commutative objects
                    seq.append(NC_Marker)

                continue

            # 3
            elif o.is_Number:
                if o is S.NaN or coeff is S.ComplexInfinity and o is S.Zero:
                    # we know for sure the result will be nan
                    return [S.NaN], [], None
                elif coeff.is_Number: # it could be zoo
                    coeff *= o
                    if coeff is S.NaN:
                        # we know for sure the result will be nan
                        return [S.NaN], [], None
                continue

            elif o is S.ComplexInfinity:
                if not coeff or coeff is S.ComplexInfinity:
                    # we know for sure the result will be nan
                    return [S.NaN], [], None
                coeff = S.ComplexInfinity
                continue

            elif o.is_commutative:
                #      e
                # o = b
                b, e = o.as_base_exp()

                #  y
                # 3
                if o.is_Pow and b.is_Number:

                    # get all the factors with numeric base so they can be
                    # combined below, but don't combine negatives unless
                    # the exponent is an integer
                    if e.is_Rational:
                        if e.is_Integer:
                            coeff *= Pow(b, e) # it is an unevaluated power
                            continue
                        elif e.is_negative:    # also a sign of an unevaluated power
                            seq.append(Pow(b, e))
                            continue
                        elif b.is_negative:
                            neg1e += e
                            b = -b
                        if b is not S.One:
                            pnum_rat.setdefault(b, []).append(e)
                        continue
                    elif b.is_positive or e.is_integer:
                        num_exp.append((b, e))
                        continue
                c_powers.append((b,e))

            # NON-COMMUTATIVE
            # TODO: Make non-commutative exponents not combine automatically
            else:
                if o is not NC_Marker:
                    nc_seq.append(o)

                # process nc_seq (if any)
                while nc_seq:
                    o = nc_seq.pop(0)
                    if not nc_part:
                        nc_part.append(o)
                        continue

                    #                             b    c       b+c
                    # try to combine last terms: a  * a   ->  a
                    o1 = nc_part.pop()
                    b1,e1 = o1.as_base_exp()
                    b2,e2 = o.as_base_exp()
                    new_exp = e1 + e2
                    # Only allow powers to combine if the new exponent is
                    # not an Add. This allow things like a**2*b**3 == a**5
                    # if a.is_commutative == False, but prohibits
                    # a**x*a**y and x**a*x**b from combining (x,y commute).
                    if b1==b2 and (not new_exp.is_Add):
                        o12 = b1 ** new_exp

                        # now o12 could be a commutative object
                        if o12.is_commutative:
                            seq.append(o12)
                            continue
                        else:
                            nc_seq.insert(0, o12)

                    else:
                        nc_part.append(o1)
                        nc_part.append(o)

        # We do want a combined exponent if it would not be an Add, such as
        #  y    2y     3y
        # x  * x   -> x
        # We determine this if two exponents have the same term in as_coeff_mul
        #
        # Unfortunately, this isn't smart enough to consider combining into
        # exponents that might already be adds, so things like:
        #  z - y    y
        # x      * x  will be left alone.  This is because checking every possible
        # combination can slow things down.

        # gather exponents of common bases...
        # in c_powers
        new_c_powers = []
        common_b = {} # b:e
        for b, e in c_powers:
            co = e.as_coeff_mul()
            common_b.setdefault(b, {}).setdefault(co[1], []).append(co[0])
        for b, d in common_b.items():
            for di, li in d.items():
                d[di] = Add(*li)
        for b, e in common_b.items():
            for t, c in e.items():
                new_c_powers.append((b,c*Mul(*t)))
        c_powers = new_c_powers

        # and in num_exp
        new_num_exp = []
        common_b = {} # b:e
        for b, e in num_exp:
            co = e.as_coeff_mul()
            common_b.setdefault(b, {}).setdefault(co[1], []).append(co[0])
        for b, d in common_b.items():
            for di, li in d.items():
                d[di] = Add(*li)
        for b, e in common_b.items():
            for t, c in e.items():
                new_num_exp.append((b,c*Mul(*t)))
        num_exp = new_num_exp

        # --- PART 2 ---
        #
        # o process collected powers  (x**0 -> 1; x**1 -> x; otherwise Pow)
        # o combine collected powers  (2**x * 3**x -> 6**x)
        #   with numeric base

        # ................................
        # now we have:
        # - coeff:
        # - c_powers:    (b, e)
        # - num_exp:     (2, e)
        # - pnum_rat:    {(1/3, [1/3, 2/3, 1/4])}

        #  0             1
        # x  -> 1       x  -> x
        for b, e in c_powers:
            if e is S.One:
                if b.is_Number:
                    coeff *= b
                else:
                    c_part.append(b)
            elif not e is S.Zero:
                c_part.append(Pow(b, e))

        #  x    x     x
        # 2  * 3  -> 6
        inv_exp_dict = {}   # exp:Mul(num-bases)     x    x
                            # e.g.  x:6  for  ... * 2  * 3  * ...
        for b, e in num_exp:
            inv_exp_dict.setdefault(e, []).append(b)
        for e, b in inv_exp_dict.items():
            inv_exp_dict[e] = Mul(*b)
        c_part.extend([Pow(b, e) for e, b in inv_exp_dict.iteritems() if e])

        # b, e -> e, b
        # {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])}
        comb_e = {}
        for b, e in pnum_rat.iteritems():
            comb_e.setdefault(Add(*e), []).append(b)
        del pnum_rat
        # process them, reducing exponents to values less than 1
        # and updating coeff if necessary else adding them to
        # num_rat for further processing
        num_rat = []
        for e, b in comb_e.iteritems():
            b = Mul(*b)
            if e.q == 1:
                coeff *= Pow(b, e)
                continue
            if e.p > e.q:
                e_i, ep = divmod(e.p, e.q)
                coeff *= Pow(b, e_i)
                e = Rational(ep, e.q)
            num_rat.append((b, e))
        del comb_e

        # extract gcd of bases in num_rat
        # 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4)
        pnew = {}
        i = 0 # steps through num_rat which may grow
        while i < len(num_rat):
            bi, ei = num_rat[i]
            grow = []
            for j in range(i + 1, len(num_rat)):
                bj, ej = num_rat[j]
                g = igcd(bi, bj)
                if g != 1:
                    # 4**r1*6**r2 -> 2**(r1+r2)  *  2**r1 *  3**r2
                    # this might have a gcd with something else
                    e = ei + ej
                    if e.q == 1:
                        coeff *= Pow(g, e)
                    else:
                        if e.p > e.q:
                            e_i, ep = divmod(e.p, e.q) # change e in place
                            coeff *= Pow(g, e_i)
                            e = Rational(ep, e.q)
                        grow.append((g, e))
                    # update the jth item
                    num_rat[j] = (bj//g, ej)
                    # update bi that we are checking with
                    bi = bi//g
                    if bi is S.One:
                        break
            if bi is not S.One:
                obj = Pow(bi, ei)
                if obj.is_Number:
                    coeff *= obj
                else:
                    if obj.is_Mul: # 12**(1/2) -> 2*sqrt(3)
                        c, obj = obj.args # expecting only 2 args
                        coeff *= c
                        assert obj.is_Pow
                        bi, ei = obj.args
                    pnew.setdefault(ei, []).append(bi)

            num_rat.extend(grow)
            i += 1

        # combine bases of the new powers
        for e, b in pnew.iteritems():
            pnew[e] = Mul(*b)

        # see if there is a base with matching coefficient
        # that the -1 can be joined with
        if neg1e:
            p = Pow(S.NegativeOne, neg1e)
            if p.is_Number:
                coeff *= p
            else:
                if p.is_Mul:
                    c, p = p.args
                    coeff *= c
                    assert p.is_Pow and p.base is S.NegativeOne
                    neg1e = p.args[1]
                for e, b in pnew.iteritems():
                    if e == neg1e and b.is_positive:
                        pnew[e] = -b
                        break
                else:
                    c_part.append(p)

        # add all the pnew powers
        c_part.extend([Pow(b, e) for e, b in pnew.iteritems()])

        # oo, -oo
        if (coeff is S.Infinity) or (coeff is S.NegativeInfinity):
            new_c_part = []
            coeff_sign = 1
            for t in c_part:
                if t.is_positive:
                    continue
                if t.is_negative:
                    coeff_sign *= -1
                    continue
                new_c_part.append(t)
            c_part = new_c_part
            new_nc_part = []
            for t in nc_part:
                if t.is_positive:
                    continue
                if t.is_negative:
                    coeff_sign *= -1
                    continue
                new_nc_part.append(t)
            nc_part = new_nc_part
            coeff *= coeff_sign

        # zoo
        if coeff is S.ComplexInfinity:
            # zoo might be
            #   unbounded_real + bounded_im
            #   bounded_real + unbounded_im
            #   unbounded_real + unbounded_im
            # and non-zero real or imaginary will not change that status.
            c_part = [c for c in c_part if not (c.is_nonzero and
                                                c.is_real is not None)]
            nc_part = [c for c in nc_part if not (c.is_nonzero and
                                                  c.is_real is not None)]

        # 0
        elif coeff is S.Zero:
            # we know for sure the result will be 0
            return [coeff], [], order_symbols

        # order commutative part canonically
        c_part.sort(key=cmp_to_key(Basic.compare))

        # current code expects coeff to be always in slot-0
        if coeff is not S.One:
            c_part.insert(0, coeff)


        # we are done
        if len(c_part)==2 and c_part[0].is_Number and c_part[1].is_Add:
            # 2*(1+a) -> 2 + 2 * a
            coeff = c_part[0]
            c_part = [Add(*[coeff*f for f in c_part[1].args])]

        return c_part, nc_part, order_symbols
Esempio n. 3
0
    def flatten(cls, seq):

        # apply associativity, separate commutative part of seq
        c_part = []  # out: commutative factors
        nc_part = []  # out: non-commutative factors

        nc_seq = []

        coeff = S.One  # standalone term
        # e.g. 3 * ...

        c_powers = []  # (base,exp)      n
        # e.g. (x,n) for x

        num_exp = []  # (num-base, exp)           y
        # e.g.  (3, y)  for  ... * 3  * ...

        neg1e = 0  # exponent on -1 extracted from Number-based Pow

        pnum_rat = {}  # (num-base, Rat-exp)          1/2
        # e.g.  (3, 1/2)  for  ... * 3     * ...

        order_symbols = None

        # --- PART 1 ---
        #
        # "collect powers and coeff":
        #
        # o coeff
        # o c_powers
        # o num_exp
        # o neg1e
        # o pnum_rat
        #
        # NOTE: this is optimized for all-objects-are-commutative case

        for o in seq:
            # O(x)
            if o.is_Order:
                o, order_symbols = o.as_expr_variables(order_symbols)

            # Mul([...])
            if o.is_Mul:
                if o.is_commutative:
                    seq.extend(o.args)  # XXX zerocopy?

                else:
                    # NCMul can have commutative parts as well
                    for q in o.args:
                        if q.is_commutative:
                            seq.append(q)
                        else:
                            nc_seq.append(q)

                    # append non-commutative marker, so we don't forget to
                    # process scheduled non-commutative objects
                    seq.append(NC_Marker)

                continue

            # 3
            elif o.is_Number:
                if o is S.NaN or coeff is S.ComplexInfinity and o is S.Zero:
                    # we know for sure the result will be nan
                    return [S.NaN], [], None
                elif coeff.is_Number:  # it could be zoo
                    coeff *= o
                    if coeff is S.NaN:
                        # we know for sure the result will be nan
                        return [S.NaN], [], None
                continue

            elif o is S.ComplexInfinity:
                if not coeff or coeff is S.ComplexInfinity:
                    # we know for sure the result will be nan
                    return [S.NaN], [], None
                coeff = S.ComplexInfinity
                continue

            elif o.is_commutative:
                #      e
                # o = b
                b, e = o.as_base_exp()

                #  y
                # 3
                if o.is_Pow and b.is_Number:

                    # get all the factors with numeric base so they can be
                    # combined below, but don't combine negatives unless
                    # the exponent is an integer
                    if e.is_Rational:
                        if e.is_Integer:
                            coeff *= Pow(b, e)  # it is an unevaluated power
                            continue
                        elif e.is_negative:  # also a sign of an unevaluated power
                            seq.append(Pow(b, e))
                            continue
                        elif b.is_negative:
                            neg1e += e
                            b = -b
                        if b is not S.One:
                            pnum_rat.setdefault(b, []).append(e)
                        continue
                    elif b.is_positive or e.is_integer:
                        num_exp.append((b, e))
                        continue
                c_powers.append((b, e))

            # NON-COMMUTATIVE
            # TODO: Make non-commutative exponents not combine automatically
            else:
                if o is not NC_Marker:
                    nc_seq.append(o)

                # process nc_seq (if any)
                while nc_seq:
                    o = nc_seq.pop(0)
                    if not nc_part:
                        nc_part.append(o)
                        continue

                    #                             b    c       b+c
                    # try to combine last terms: a  * a   ->  a
                    o1 = nc_part.pop()
                    b1, e1 = o1.as_base_exp()
                    b2, e2 = o.as_base_exp()
                    new_exp = e1 + e2
                    # Only allow powers to combine if the new exponent is
                    # not an Add. This allow things like a**2*b**3 == a**5
                    # if a.is_commutative == False, but prohibits
                    # a**x*a**y and x**a*x**b from combining (x,y commute).
                    if b1 == b2 and (not new_exp.is_Add):
                        o12 = b1**new_exp

                        # now o12 could be a commutative object
                        if o12.is_commutative:
                            seq.append(o12)
                            continue
                        else:
                            nc_seq.insert(0, o12)

                    else:
                        nc_part.append(o1)
                        nc_part.append(o)

        # We do want a combined exponent if it would not be an Add, such as
        #  y    2y     3y
        # x  * x   -> x
        # We determine this if two exponents have the same term in as_coeff_mul
        #
        # Unfortunately, this isn't smart enough to consider combining into
        # exponents that might already be adds, so things like:
        #  z - y    y
        # x      * x  will be left alone.  This is because checking every possible
        # combination can slow things down.

        # gather exponents of common bases...
        # in c_powers
        new_c_powers = []
        common_b = {}  # b:e
        for b, e in c_powers:
            co = e.as_coeff_mul()
            common_b.setdefault(b, {}).setdefault(co[1], []).append(co[0])
        for b, d in common_b.items():
            for di, li in d.items():
                d[di] = Add(*li)
        for b, e in common_b.items():
            for t, c in e.items():
                new_c_powers.append((b, c * Mul(*t)))
        c_powers = new_c_powers

        # and in num_exp
        new_num_exp = []
        common_b = {}  # b:e
        for b, e in num_exp:
            co = e.as_coeff_mul()
            common_b.setdefault(b, {}).setdefault(co[1], []).append(co[0])
        for b, d in common_b.items():
            for di, li in d.items():
                d[di] = Add(*li)
        for b, e in common_b.items():
            for t, c in e.items():
                new_num_exp.append((b, c * Mul(*t)))
        num_exp = new_num_exp

        # --- PART 2 ---
        #
        # o process collected powers  (x**0 -> 1; x**1 -> x; otherwise Pow)
        # o combine collected powers  (2**x * 3**x -> 6**x)
        #   with numeric base

        # ................................
        # now we have:
        # - coeff:
        # - c_powers:    (b, e)
        # - num_exp:     (2, e)
        # - pnum_rat:    {(1/3, [1/3, 2/3, 1/4])}

        #  0             1
        # x  -> 1       x  -> x
        for b, e in c_powers:
            if e is S.One:
                if b.is_Number:
                    coeff *= b
                else:
                    c_part.append(b)
            elif not e is S.Zero:
                c_part.append(Pow(b, e))

        #  x    x     x
        # 2  * 3  -> 6
        inv_exp_dict = {}  # exp:Mul(num-bases)     x    x
        # e.g.  x:6  for  ... * 2  * 3  * ...
        for b, e in num_exp:
            inv_exp_dict.setdefault(e, []).append(b)
        for e, b in inv_exp_dict.items():
            inv_exp_dict[e] = Mul(*b)
        c_part.extend([Pow(b, e) for e, b in inv_exp_dict.iteritems() if e])

        # b, e -> e, b
        # {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])}
        comb_e = {}
        for b, e in pnum_rat.iteritems():
            comb_e.setdefault(Add(*e), []).append(b)
        del pnum_rat
        # process them, reducing exponents to values less than 1
        # and updating coeff if necessary else adding them to
        # num_rat for further processing
        num_rat = []
        for e, b in comb_e.iteritems():
            b = Mul(*b)
            if e.q == 1:
                coeff *= Pow(b, e)
                continue
            if e.p > e.q:
                e_i, ep = divmod(e.p, e.q)
                coeff *= Pow(b, e_i)
                e = Rational(ep, e.q)
            num_rat.append((b, e))
        del comb_e

        # extract gcd of bases in num_rat
        # 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4)
        pnew = {}
        i = 0  # steps through num_rat which may grow
        while i < len(num_rat):
            bi, ei = num_rat[i]
            grow = []
            for j in range(i + 1, len(num_rat)):
                bj, ej = num_rat[j]
                g = igcd(bi, bj)
                if g != 1:
                    # 4**r1*6**r2 -> 2**(r1+r2)  *  2**r1 *  3**r2
                    # this might have a gcd with something else
                    e = ei + ej
                    if e.q == 1:
                        coeff *= Pow(g, e)
                    else:
                        if e.p > e.q:
                            e_i, ep = divmod(e.p, e.q)  # change e in place
                            coeff *= Pow(g, e_i)
                            e = Rational(ep, e.q)
                        grow.append((g, e))
                    # update the jth item
                    num_rat[j] = (bj // g, ej)
                    # update bi that we are checking with
                    bi = bi // g
                    if bi is S.One:
                        break
            if bi is not S.One:
                obj = Pow(bi, ei)
                if obj.is_Number:
                    coeff *= obj
                else:
                    if obj.is_Mul:  # 12**(1/2) -> 2*sqrt(3)
                        c, obj = obj.args  # expecting only 2 args
                        coeff *= c
                        assert obj.is_Pow
                        bi, ei = obj.args
                    pnew.setdefault(ei, []).append(bi)

            num_rat.extend(grow)
            i += 1

        # combine bases of the new powers
        for e, b in pnew.iteritems():
            pnew[e] = Mul(*b)

        # see if there is a base with matching coefficient
        # that the -1 can be joined with
        if neg1e:
            p = Pow(S.NegativeOne, neg1e)
            if p.is_Number:
                coeff *= p
            else:
                if p.is_Mul:
                    c, p = p.args
                    coeff *= c
                    assert p.is_Pow and p.base is S.NegativeOne
                    neg1e = p.args[1]
                for e, b in pnew.iteritems():
                    if e == neg1e and b.is_positive:
                        pnew[e] = -b
                        break
                else:
                    c_part.append(p)

        # add all the pnew powers
        c_part.extend([Pow(b, e) for e, b in pnew.iteritems()])

        # oo, -oo
        if (coeff is S.Infinity) or (coeff is S.NegativeInfinity):
            new_c_part = []
            coeff_sign = 1
            for t in c_part:
                if t.is_positive:
                    continue
                if t.is_negative:
                    coeff_sign *= -1
                    continue
                new_c_part.append(t)
            c_part = new_c_part
            new_nc_part = []
            for t in nc_part:
                if t.is_positive:
                    continue
                if t.is_negative:
                    coeff_sign *= -1
                    continue
                new_nc_part.append(t)
            nc_part = new_nc_part
            coeff *= coeff_sign

        # zoo
        if coeff is S.ComplexInfinity:
            # zoo might be
            #   unbounded_real + bounded_im
            #   bounded_real + unbounded_im
            #   unbounded_real + unbounded_im
            # and non-zero real or imaginary will not change that status.
            c_part = [
                c for c in c_part
                if not (c.is_nonzero and c.is_real is not None)
            ]
            nc_part = [
                c for c in nc_part
                if not (c.is_nonzero and c.is_real is not None)
            ]

        # 0
        elif coeff is S.Zero:
            # we know for sure the result will be 0
            return [coeff], [], order_symbols

        # order commutative part canonically
        c_part.sort(key=cmp_to_key(Basic.compare))

        # current code expects coeff to be always in slot-0
        if coeff is not S.One:
            c_part.insert(0, coeff)

        # we are done
        if len(c_part) == 2 and c_part[0].is_Number and c_part[1].is_Add:
            # 2*(1+a) -> 2 + 2 * a
            coeff = c_part[0]
            c_part = [Add(*[coeff * f for f in c_part[1].args])]

        return c_part, nc_part, order_symbols
Esempio n. 4
0
class Mul(AssocOp):

    __slots__ = []

    is_Mul = True

    #identity = S.One
    # cyclic import, so defined in numbers.py

    # Key for sorting commutative args in canonical order
    _args_sortkey = cmp_to_key(Basic.compare)

    @classmethod
    def flatten(cls, seq):
        """Return commutative, noncommutative and order arguments by
        combining related terms.

        ** Developer Notes **
            * In an expression like ``a*b*c``, python process this through sympy
              as ``Mul(Mul(a, b), c)``. This can have undesirable consequences.

              -  Sometimes terms are not combined as one would like:
                 {c.f. http://code.google.com/p/sympy/issues/detail?id=1497}

                >>> from sympy import Mul, sqrt
                >>> from sympy.abc import x, y, z
                >>> 2*(x + 1) # this is the 2-arg Mul behavior
                2*x + 2
                >>> y*(x + 1)*2
                2*y*(x + 1)
                >>> 2*(x + 1)*y # 2-arg result will be obtained first
                y*(2*x + 2)
                >>> Mul(2, x + 1, y) # all 3 args simultaneously processed
                2*y*(x + 1)
                >>> 2*((x + 1)*y) # parentheses can control this behavior
                2*y*(x + 1)

                Powers with compound bases may not find a single base to
                combine with unless all arguments are processed at once.
                Post-processing may be necessary in such cases.
                {c.f. http://code.google.com/p/sympy/issues/detail?id=2629}

                >>> a = sqrt(x*sqrt(y))
                >>> a**3
                (x*sqrt(y))**(3/2)
                >>> Mul(a,a,a)
                (x*sqrt(y))**(3/2)
                >>> a*a*a
                x*sqrt(y)*sqrt(x*sqrt(y))
                >>> _.subs(a.base, z).subs(z, a.base)
                (x*sqrt(y))**(3/2)

              -  If more than two terms are being multiplied then all the
                 previous terms will be re-processed for each new argument.
                 So if each of ``a``, ``b`` and ``c`` were :class:`Mul`
                 expression, then ``a*b*c`` (or building up the product
                 with ``*=``) will process all the arguments of ``a`` and
                 ``b`` twice: once when ``a*b`` is computed and again when
                 ``c`` is multiplied.

                 Using ``Mul(a, b, c)`` will process all arguments once.

            * The results of Mul are cached according to arguments, so flatten
              will only be called once for ``Mul(a, b, c)``. If you can
              structure a calculation so the arguments are most likely to be
              repeats then this can save time in computing the answer. For
              example, say you had a Mul, M, that you wished to divide by ``d[i]``
              and multiply by ``n[i]`` and you suspect there are many repeats
              in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather
              than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the
              product, ``M*n[i]`` will be returned without flattening -- the
              cached value will be returned. If you divide by the ``d[i]``
              first (and those are more unique than the ``n[i]``) then that will
              create a new Mul, ``M/d[i]`` the args of which will be traversed
              again when it is multiplied by ``n[i]``.

              {c.f. http://code.google.com/p/sympy/issues/detail?id=2607}

              This consideration is moot if the cache is turned off.

            NB
              The validity of the above notes depends on the implementation
              details of Mul and flatten which may change at any time. Therefore,
              you should only consider them when your code is highly performance
              sensitive.

        """
        rv = None
        if len(seq) == 2:
            a, b = seq
            if b.is_Rational:
                a, b = b, a
            assert not a is S.One
            if a and a.is_Rational and a.q:
                r, b = b.as_coeff_Mul()
                a *= r
                if b.is_Mul:
                    bargs, nc = b.args_cnc(clist=True)
                    rv = bargs, nc, None
                    if a is not S.One:
                        bargs.insert(0, a)

                elif b.is_Add and b.is_commutative:
                    if a is S.One:
                        rv = [b], [], None
                    else:
                        r, b = b.as_coeff_Add()
                        bargs = [_keep_coeff(a, bi) for bi in Add.make_args(b)]
                        bargs.sort(key=hash)
                        ar = a * r
                        if ar:
                            bargs.insert(0, ar)
                        bargs = [Add._from_args(bargs)]
                        rv = bargs, [], None
            if rv:
                return rv

        # apply associativity, separate commutative part of seq
        c_part = []  # out: commutative factors
        nc_part = []  # out: non-commutative factors

        nc_seq = []

        coeff = S.One  # standalone term
        # e.g. 3 * ...

        c_powers = []  # (base,exp)      n
        # e.g. (x,n) for x

        num_exp = []  # (num-base, exp)           y
        # e.g.  (3, y)  for  ... * 3  * ...

        neg1e = 0  # exponent on -1 extracted from Number-based Pow

        pnum_rat = {}  # (num-base, Rat-exp)          1/2
        # e.g.  (3, 1/2)  for  ... * 3     * ...

        order_symbols = None

        # --- PART 1 ---
        #
        # "collect powers and coeff":
        #
        # o coeff
        # o c_powers
        # o num_exp
        # o neg1e
        # o pnum_rat
        #
        # NOTE: this is optimized for all-objects-are-commutative case

        for o in seq:
            # O(x)
            if o.is_Order:
                o, order_symbols = o.as_expr_variables(order_symbols)

            # Mul([...])
            if o.is_Mul:
                if o.is_commutative:
                    seq.extend(o.args)  # XXX zerocopy?

                else:
                    # NCMul can have commutative parts as well
                    for q in o.args:
                        if q.is_commutative:
                            seq.append(q)
                        else:
                            nc_seq.append(q)

                    # append non-commutative marker, so we don't forget to
                    # process scheduled non-commutative objects
                    seq.append(NC_Marker)

                continue

            # 3
            elif o.is_Number:
                if o is S.NaN or coeff is S.ComplexInfinity and o is S.Zero:
                    # we know for sure the result will be nan
                    return [S.NaN], [], None
                elif coeff.is_Number:  # it could be zoo
                    coeff *= o
                    if coeff is S.NaN:
                        # we know for sure the result will be nan
                        return [S.NaN], [], None
                continue

            elif o is S.ComplexInfinity:
                if not coeff or coeff is S.ComplexInfinity:
                    # we know for sure the result will be nan
                    return [S.NaN], [], None
                coeff = S.ComplexInfinity
                continue

            elif o.is_commutative:
                #      e
                # o = b
                b, e = o.as_base_exp()

                #  y
                # 3
                if o.is_Pow and b.is_Number:

                    # get all the factors with numeric base so they can be
                    # combined below, but don't combine negatives unless
                    # the exponent is an integer
                    if e.is_Rational:
                        if e.is_Integer:
                            coeff *= Pow(b, e)  # it is an unevaluated power
                            continue
                        elif e.is_negative:  # also a sign of an unevaluated power
                            seq.append(Pow(b, e))
                            continue
                        elif b.is_negative:
                            neg1e += e
                            b = -b
                        if b is not S.One:
                            pnum_rat.setdefault(b, []).append(e)
                        continue
                    elif b.is_positive or e.is_integer:
                        num_exp.append((b, e))
                        continue
                c_powers.append((b, e))

            # NON-COMMUTATIVE
            # TODO: Make non-commutative exponents not combine automatically
            else:
                if o is not NC_Marker:
                    nc_seq.append(o)

                # process nc_seq (if any)
                while nc_seq:
                    o = nc_seq.pop(0)
                    if not nc_part:
                        nc_part.append(o)
                        continue

                    #                             b    c       b+c
                    # try to combine last terms: a  * a   ->  a
                    o1 = nc_part.pop()
                    b1, e1 = o1.as_base_exp()
                    b2, e2 = o.as_base_exp()
                    new_exp = e1 + e2
                    # Only allow powers to combine if the new exponent is
                    # not an Add. This allow things like a**2*b**3 == a**5
                    # if a.is_commutative == False, but prohibits
                    # a**x*a**y and x**a*x**b from combining (x,y commute).
                    if b1 == b2 and (not new_exp.is_Add):
                        o12 = b1**new_exp

                        # now o12 could be a commutative object
                        if o12.is_commutative:
                            seq.append(o12)
                            continue
                        else:
                            nc_seq.insert(0, o12)

                    else:
                        nc_part.append(o1)
                        nc_part.append(o)

        # We do want a combined exponent if it would not be an Add, such as
        #  y    2y     3y
        # x  * x   -> x
        # We determine this if two exponents have the same term in as_coeff_mul
        #
        # Unfortunately, this isn't smart enough to consider combining into
        # exponents that might already be adds, so things like:
        #  z - y    y
        # x      * x  will be left alone.  This is because checking every possible
        # combination can slow things down.

        # gather exponents of common bases...
        # in c_powers
        new_c_powers = []
        common_b = {}  # b:e
        for b, e in c_powers:
            co = e.as_coeff_mul()
            common_b.setdefault(b, {}).setdefault(co[1], []).append(co[0])
        for b, d in common_b.items():
            for di, li in d.items():
                d[di] = Add(*li)
        for b, e in common_b.items():
            for t, c in e.items():
                new_c_powers.append((b, c * Mul(*t)))
        c_powers = new_c_powers

        # and in num_exp
        new_num_exp = []
        common_b = {}  # b:e
        for b, e in num_exp:
            co = e.as_coeff_mul()
            common_b.setdefault(b, {}).setdefault(co[1], []).append(co[0])
        for b, d in common_b.items():
            for di, li in d.items():
                d[di] = Add(*li)
        for b, e in common_b.items():
            for t, c in e.items():
                new_num_exp.append((b, c * Mul(*t)))
        num_exp = new_num_exp

        # --- PART 2 ---
        #
        # o process collected powers  (x**0 -> 1; x**1 -> x; otherwise Pow)
        # o combine collected powers  (2**x * 3**x -> 6**x)
        #   with numeric base

        # ................................
        # now we have:
        # - coeff:
        # - c_powers:    (b, e)
        # - num_exp:     (2, e)
        # - pnum_rat:    {(1/3, [1/3, 2/3, 1/4])}

        #  0             1
        # x  -> 1       x  -> x
        for b, e in c_powers:
            if e is S.One:
                if b.is_Number:
                    coeff *= b
                else:
                    c_part.append(b)
            elif e is not S.Zero:
                c_part.append(Pow(b, e))

        #  x    x     x
        # 2  * 3  -> 6
        inv_exp_dict = {}  # exp:Mul(num-bases)     x    x
        # e.g.  x:6  for  ... * 2  * 3  * ...
        for b, e in num_exp:
            inv_exp_dict.setdefault(e, []).append(b)
        for e, b in inv_exp_dict.items():
            inv_exp_dict[e] = Mul(*b)
        c_part.extend([Pow(b, e) for e, b in inv_exp_dict.iteritems() if e])

        # b, e -> e' = sum(e), b
        # {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])}
        comb_e = {}
        for b, e in pnum_rat.iteritems():
            comb_e.setdefault(Add(*e), []).append(b)
        del pnum_rat
        # process them, reducing exponents to values less than 1
        # and updating coeff if necessary else adding them to
        # num_rat for further processing
        num_rat = []
        for e, b in comb_e.iteritems():
            b = Mul(*b)
            if e.q == 1:
                coeff *= Pow(b, e)
                continue
            if e.p > e.q:
                e_i, ep = divmod(e.p, e.q)
                coeff *= Pow(b, e_i)
                e = Rational(ep, e.q)
            num_rat.append((b, e))
        del comb_e

        # extract gcd of bases in num_rat
        # 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4)
        pnew = {}
        i = 0  # steps through num_rat which may grow
        while i < len(num_rat):
            bi, ei = num_rat[i]
            grow = []
            for j in range(i + 1, len(num_rat)):
                bj, ej = num_rat[j]
                g = igcd(bi, bj)
                if g != 1:
                    # 4**r1*6**r2 -> 2**(r1+r2)  *  2**r1 *  3**r2
                    # this might have a gcd with something else
                    e = ei + ej
                    if e.q == 1:
                        coeff *= Pow(g, e)
                    else:
                        if e.p > e.q:
                            e_i, ep = divmod(e.p, e.q)  # change e in place
                            coeff *= Pow(g, e_i)
                            e = Rational(ep, e.q)
                        grow.append((g, e))
                    # update the jth item
                    num_rat[j] = (bj // g, ej)
                    # update bi that we are checking with
                    bi = bi // g
                    if bi is S.One:
                        break
            if bi is not S.One:
                obj = Pow(bi, ei)
                if obj.is_Number:
                    coeff *= obj
                else:
                    if obj.is_Mul:  # sqrt(12) -> 2*sqrt(3)
                        c, obj = obj.args  # expecting only 2 args
                        coeff *= c
                        assert obj.is_Pow
                        bi, ei = obj.args
                    pnew.setdefault(ei, []).append(bi)

            num_rat.extend(grow)
            i += 1

        # combine bases of the new powers
        for e, b in pnew.iteritems():
            pnew[e] = Mul(*b)

        # see if there is a base with matching coefficient
        # that the -1 can be joined with
        if neg1e:
            p = Pow(S.NegativeOne, neg1e)
            if p.is_Number:
                coeff *= p
            else:
                if p.is_Mul:
                    c, p = p.args
                    coeff *= c
                    assert p.is_Pow and p.base is S.NegativeOne
                    neg1e = p.args[1]
                for e, b in pnew.iteritems():
                    if e == neg1e and b.is_positive:
                        pnew[e] = -b
                        break
                else:
                    c_part.append(p)

        # add all the pnew powers
        c_part.extend([Pow(b, e) for e, b in pnew.iteritems()])

        # oo, -oo
        if (coeff is S.Infinity) or (coeff is S.NegativeInfinity):
            new_c_part = []
            coeff_sign = 1
            for t in c_part:
                if t.is_positive:
                    continue
                if t.is_negative:
                    coeff_sign *= -1
                    continue
                new_c_part.append(t)
            c_part = new_c_part
            new_nc_part = []
            for t in nc_part:
                if t.is_positive:
                    continue
                if t.is_negative:
                    coeff_sign *= -1
                    continue
                new_nc_part.append(t)
            nc_part = new_nc_part
            coeff *= coeff_sign

        # zoo
        if coeff is S.ComplexInfinity:
            # zoo might be
            #   unbounded_real + bounded_im
            #   bounded_real + unbounded_im
            #   unbounded_real + unbounded_im
            # and non-zero real or imaginary will not change that status.
            c_part = [
                c for c in c_part
                if not (c.is_nonzero and c.is_real is not None)
            ]
            nc_part = [
                c for c in nc_part
                if not (c.is_nonzero and c.is_real is not None)
            ]

        # 0
        elif coeff is S.Zero:
            # we know for sure the result will be 0
            return [coeff], [], order_symbols

        # order commutative part canonically
        c_part.sort(key=cls._args_sortkey)

        # current code expects coeff to be always in slot-0
        if coeff is not S.One:
            c_part.insert(0, coeff)

        # we are done
        if len(c_part) == 2 and c_part[0].is_Number and c_part[1].is_Add:
            # 2*(1+a) -> 2 + 2 * a
            coeff = c_part[0]
            c_part = [Add(*[coeff * f for f in c_part[1].args])]

        return c_part, nc_part, order_symbols

    def _eval_power(b, e):
        if e.is_Number:
            if b.is_commutative:
                if e.is_Integer:
                    # (a*b)**2 -> a**2 * b**2
                    return Mul(*[s**e for s in b.args])

                if e.is_rational:
                    coeff, rest = b.as_coeff_mul()
                    rest = list(rest)
                    unk = []
                    nonneg = []
                    neg = []
                    for bi in rest:
                        if bi.is_negative is not None:  #then we know the sign
                            if bi.is_negative:
                                neg.append(bi)
                            else:
                                nonneg.append(bi)
                        elif bi.is_polar:
                            nonneg.append(bi)
                        else:
                            unk.append(bi)
                    if len(unk) == len(rest) or len(neg) == len(rest) == 1:
                        # if all terms were unknown there is nothing to pull
                        # out except maybe the coeff; if there is a single
                        # negative term, this is the base case which cannot
                        # be processed further
                        if coeff.is_negative:
                            coeff *= -1
                            rest[0] = -rest[0]
                        if coeff is S.One:
                            return None
                        return Mul(Pow(coeff, e), Pow(Mul(*rest), e))

                    # otherwise return the new expression expanding out the
                    # known terms; those that are not known can be expanded
                    # out with separate() but this will introduce a lot of
                    # "garbage" that is needed to keep one on the same branch
                    # as the unexpanded expression. The negatives are brought
                    # out with a negative sign added and a negative left behind
                    # in the unexpanded terms if there were an odd number of
                    # negatives.
                    if neg:
                        neg = [-w for w in neg]
                        if coeff.is_negative:
                            coeff = -coeff
                            unk.append(S.NegativeOne)
                        if len(neg) % 2:
                            unk.append(S.NegativeOne)
                    return Mul(*[Pow(s, e) for s in nonneg + neg + [coeff]])* \
                       Pow(Mul(*unk), e)

                coeff, rest = b.as_coeff_mul()
                if coeff is not S.One:
                    # (2*a)**3 -> 2**3 * a**3
                    return Mul(Pow(coeff, e), Mul(*[s**e for s in rest]))
            elif e.is_Integer:
                coeff, rest = b.as_coeff_mul()
                if coeff == S.One:
                    return  # the test below for even exponent needs coeff != 1
                else:
                    return Mul(Pow(coeff, e), Pow(Mul(*rest), e))

        c, t = b.as_coeff_mul()
        if e.is_even and c.is_Number and c < 0:
            return Pow((Mul(-c, Mul(*t))), e)

        #if e.has(Wild):
        #    return Mul(*[t**e for t in b])

    @classmethod
    def class_key(cls):
        return 3, 0, cls.__name__

    def _eval_evalf(self, prec):
        c, m = self.as_coeff_Mul()
        if c is S.NegativeOne:
            if m.is_Mul:
                rv = -AssocOp._eval_evalf(m, prec)
            else:
                mnew = m._eval_evalf(prec)
                if mnew is not None:
                    m = mnew
                rv = -m
        else:
            rv = AssocOp._eval_evalf(self, prec)
        if rv.is_number:
            return rv.expand()
        return rv

    @cacheit
    def as_two_terms(self):
        """Return head and tail of self.

        This is the most efficient way to get the head and tail of an
        expression.

        - if you want only the head, use self.args[0];
        - if you want to process the arguments of the tail then use
          self.as_coef_mul() which gives the head and a tuple containing
          the arguments of the tail when treated as a Mul.
        - if you want the coefficient when self is treated as an Add
          then use self.as_coeff_add()[0]

        >>> from sympy.abc import x, y
        >>> (3*x*y).as_two_terms()
        (3, x*y)
        """
        args = self.args

        if len(args) == 1:
            return S.One, self
        elif len(args) == 2:
            return args

        else:
            return args[0], self._new_rawargs(*args[1:])

    @cacheit
    def as_coeff_mul(self, *deps):
        if deps:
            l1 = []
            l2 = []
            for f in self.args:
                if f.has(*deps):
                    l2.append(f)
                else:
                    l1.append(f)
            return self._new_rawargs(*l1), tuple(l2)
        coeff, notrat = self.args[0].as_coeff_mul()
        if coeff is not S.One:
            return coeff, notrat + self.args[1:]
        return S.One, self.args

    def as_coeff_Mul(self):
        """Efficiently extract the coefficient of a product. """
        coeff, args = self.args[0], self.args[1:]

        if coeff.is_Number:
            if len(args) == 1:
                return coeff, args[0]
            else:
                return coeff, self._new_rawargs(*args)
        else:
            return S.One, self

    def as_real_imag(self, deep=True):
        other = []
        coeff = S(1)
        for a in self.args:
            if a.is_real:
                coeff *= a
            else:
                other.append(a)
        m = Mul(*other)
        return (coeff * C.re(m), coeff * C.im(m))

    @staticmethod
    def _expandsums(sums):
        """
        Helper function for _eval_expand_mul.

        sums must be a list of instances of Basic.
        """

        L = len(sums)
        if L == 1:
            return sums[0].args
        terms = []
        left = Mul._expandsums(sums[:L // 2])
        right = Mul._expandsums(sums[L // 2:])

        terms = [Mul(a, b) for a in left for b in right]
        added = Add(*terms)
        return Add.make_args(added)  #it may have collapsed down to one term

    def _eval_expand_basic(self, deep=True, **hints):
        sargs, terms = self.args, []
        for term in sargs:
            if hasattr(term, '_eval_expand_basic'):
                newterm = term._eval_expand_basic(deep=deep, **hints)
            else:
                newterm = term
            terms.append(newterm)
        return self.func(*terms)

    def _eval_expand_power_exp(self, deep=True, **hints):
        sargs, terms = self.args, []
        for term in sargs:
            if hasattr(term, '_eval_expand_power_exp'):
                newterm = term._eval_expand_power_exp(deep=deep, **hints)
            else:
                newterm = term
            terms.append(newterm)
        return self.func(*terms)

    def _eval_expand_power_base(self, deep=True, **hints):
        sargs, terms = self.args, []
        for term in sargs:
            if hasattr(term, '_eval_expand_power_base'):
                newterm = term._eval_expand_power_base(deep=deep, **hints)
            else:
                newterm = term
            terms.append(newterm)
        return self.func(*terms)

    def _eval_expand_mul(self, deep=True, **hints):
        from sympy import fraction
        expr = self
        n, d = fraction(expr)
        if d is not S.One:
            expr = n / d._eval_expand_mul(deep=deep, **hints)
            if not expr.is_Mul:
                return expr._eval_expand_mul(deep=deep, **hints)

        plain, sums, rewrite = [], [], False
        for factor in expr.args:
            if deep:
                term = factor.expand(deep=deep, **hints)
                if term != factor:
                    factor = term
                    rewrite = True

            if factor.is_Add:
                sums.append(factor)
                rewrite = True
            else:
                if factor.is_commutative:
                    plain.append(factor)
                else:
                    Wrapper = Basic
                    sums.append(Wrapper(factor))

        if not rewrite:
            return expr
        else:
            plain = Mul(*plain)
            if sums:
                terms = Mul._expandsums(sums)
                args = []
                for term in terms:
                    t = Mul(plain, term)
                    if t.is_Mul and any(a.is_Add for a in t.args):
                        t = t._eval_expand_mul(deep=deep)
                    args.append(t)
                return Add(*args)
            else:
                return plain

    def _eval_expand_multinomial(self, deep=True, **hints):
        sargs, terms = self.args, []
        for term in sargs:
            if hasattr(term, '_eval_expand_multinomial'):
                newterm = term._eval_expand_multinomial(deep=deep, **hints)
            else:
                newterm = term
            terms.append(newterm)
        return self.func(*terms)

    def _eval_expand_log(self, deep=True, **hints):
        sargs, terms = self.args, []
        for term in sargs:
            if hasattr(term, '_eval_expand_log'):
                newterm = term._eval_expand_log(deep=deep, **hints)
            else:
                newterm = term
            terms.append(newterm)
        return self.func(*terms)

    def _eval_expand_complex(self, deep=True, **hints):
        sargs, terms = self.args, []
        for term in sargs:
            if hasattr(term, '_eval_expand_complex'):
                newterm = term._eval_expand_complex(deep=deep, **hints)
            else:
                newterm = term
            terms.append(newterm)
        return self.func(*terms)

    def _eval_expand_trig(self, deep=True, **hints):
        sargs, terms = self.args, []
        for term in sargs:
            if hasattr(term, '_eval_expand_trig'):
                newterm = term._eval_expand_trig(deep=deep, **hints)
            else:
                newterm = term
            terms.append(newterm)
        return self.func(*terms)

    def _eval_expand_func(self, deep=True, **hints):
        sargs, terms = self.args, []
        for term in sargs:
            if hasattr(term, '_eval_expand_func'):
                newterm = term._eval_expand_func(deep=deep, **hints)
            else:
                newterm = term
            terms.append(newterm)
        return self.func(*terms)

    def _eval_derivative(self, s):
        terms = list(self.args)
        factors = []
        for i in xrange(len(terms)):
            t = terms[i].diff(s)
            if t is S.Zero:
                continue
            factors.append(Mul(*(terms[:i] + [t] + terms[i + 1:])))
        return Add(*factors)

    def _matches_simple(self, expr, repl_dict):
        # handle (w*3).matches('x*5') -> {w: x*5/3}
        coeff, terms = self.as_coeff_mul()
        if len(terms) == 1:
            newexpr = self.__class__._combine_inverse(expr, coeff)
            return terms[0].matches(newexpr, repl_dict)
        return

    def matches(self, expr, repl_dict={}):
        expr = sympify(expr)
        if self.is_commutative and expr.is_commutative:
            return AssocOp._matches_commutative(self, expr, repl_dict)
        # todo for commutative parts, until then use the default matches method for non-commutative products
        return self._matches(expr, repl_dict)

    def _matches(self, expr, repl_dict={}):
        # weed out negative one prefixes
        sign = 1
        a, b = self.as_two_terms()
        if a is S.NegativeOne:
            if b.is_Mul:
                sign = -sign
            else:
                # the remainder, b, is not a Mul anymore
                return b.matches(-expr, repl_dict)
        expr = sympify(expr)
        if expr.is_Mul and expr.args[0] is S.NegativeOne:
            expr = -expr
            sign = -sign

        if not expr.is_Mul:
            # expr can only match if it matches b and a matches +/- 1
            if len(self.args) == 2:
                # quickly test for equality
                if b == expr:
                    return a.matches(Rational(sign), repl_dict)
                # do more expensive match
                dd = b.matches(expr, repl_dict)
                if dd == None:
                    return None
                dd = a.matches(Rational(sign), dd)
                return dd
            return None

        d = repl_dict.copy()

        # weed out identical terms
        pp = list(self.args)
        ee = list(expr.args)
        for p in self.args:
            if p in expr.args:
                ee.remove(p)
                pp.remove(p)

        # only one symbol left in pattern -> match the remaining expression
        if len(pp) == 1 and isinstance(pp[0], C.Wild):
            if len(ee) == 1:
                d[pp[0]] = sign * ee[0]
            else:
                d[pp[0]] = sign * expr.func(*ee)
            return d

        if len(ee) != len(pp):
            return None

        for p, e in zip(pp, ee):
            d = p.xreplace(d).matches(e, d)
            if d is None:
                return None
        return d

    @staticmethod
    def _combine_inverse(lhs, rhs):
        """
        Returns lhs/rhs, but treats arguments like symbols, so things like
        oo/oo return 1, instead of a nan.
        """
        if lhs == rhs:
            return S.One

        def check(l, r):
            if l.is_Float and r.is_comparable:
                # if both objects are added to 0 they will share the same "normalization"
                # and are more likely to compare the same. Since Add(foo, 0) will not allow
                # the 0 to pass, we use __add__ directly.
                return l.__add__(0) == r.evalf().__add__(0)
            return False

        if check(lhs, rhs) or check(rhs, lhs):
            return S.One
        if lhs.is_Mul and rhs.is_Mul:
            a = list(lhs.args)
            b = [1]
            for x in rhs.args:
                if x in a:
                    a.remove(x)
                else:
                    b.append(x)
            return Mul(*a) / Mul(*b)
        return lhs / rhs

    def as_powers_dict(self):
        d = defaultdict(list)
        for term in self.args:
            b, e = term.as_base_exp()
            d[b].append(e)
        for b, e in d.iteritems():
            if len(e) == 1:
                e = e[0]
            else:
                e = Add(*e)
            d[b] = e
        return d

    def as_numer_denom(self):
        # don't use _from_args to rebuild the numerators and denominators
        # as the order is not guaranteed to be the same once they have
        # been separated from each other
        numers, denoms = zip(*[f.as_numer_denom() for f in self.args])
        return Mul(*numers), Mul(*denoms)

    def as_base_exp(self):
        e1 = None
        bases = []
        nc = 0
        for m in self.args:
            b, e = m.as_base_exp()
            if not b.is_commutative:
                nc += 1
            if e1 is None:
                e1 = e
            elif e != e1 or nc > 1:
                return self, S.One
            bases.append(b)
        return Mul(*bases), e1

    def _eval_is_polynomial(self, syms):
        return all(term._eval_is_polynomial(syms) for term in self.args)

    def _eval_is_rational_function(self, syms):
        return all(term._eval_is_rational_function(syms) for term in self.args)

    _eval_is_bounded = lambda self: self._eval_template_is_attr('is_bounded')
    _eval_is_commutative = lambda self: self._eval_template_is_attr(
        'is_commutative')
    _eval_is_integer = lambda self: self._eval_template_is_attr('is_integer')
    _eval_is_comparable = lambda self: self._eval_template_is_attr(
        'is_comparable')

    def _eval_is_polar(self):
        has_polar = any(arg.is_polar for arg in self.args)
        return has_polar and \
               all(arg.is_polar or arg.is_positive for arg in self.args)

    # I*I -> R,  I*I*I -> -I

    def _eval_is_real(self):
        im_count = 0
        is_neither = False
        for t in self.args:
            if t.is_imaginary:
                im_count += 1
                continue
            t_real = t.is_real
            if t_real:
                continue
            elif t_real is False:
                if is_neither:
                    return None
                else:
                    is_neither = True
            else:
                return None
        if is_neither:
            return False

        return (im_count % 2 == 0)

    def _eval_is_imaginary(self):
        im_count = 0
        is_neither = False
        for t in self.args:
            if t.is_imaginary:
                im_count += 1
                continue
            t_real = t.is_real
            if t_real:
                continue
            elif t_real is False:
                if is_neither:
                    return None
                else:
                    is_neither = True
            else:
                return None
        if is_neither:
            return False

        return (im_count % 2 == 1)

    def _eval_is_irrational(self):
        for t in self.args:
            a = t.is_irrational
            if a:
                others = list(self.args)
                others.remove(t)
                if all(x.is_rational is True for x in others):
                    return True
                return None
            if a is None:
                return
        return False

    def _eval_is_positive(self):
        terms = [t for t in self.args if not t.is_positive]
        if not terms:
            return True
        c = terms[0]
        if len(terms) == 1:
            if c.is_nonpositive:
                return False
            return
        r = self._new_rawargs(*terms[1:])
        if c.is_negative and r.is_negative:
            return True
        if r.is_negative and c.is_negative:
            return True
        # check for nonpositivity, <=0
        if c.is_negative and r.is_nonnegative:
            return False
        if r.is_negative and c.is_nonnegative:
            return False
        if c.is_nonnegative and r.is_nonpositive:
            return False
        if r.is_nonnegative and c.is_nonpositive:
            return False

    def _eval_is_negative(self):
        terms = [t for t in self.args if not t.is_positive]
        if not terms:
            # all terms are either positive -- 2*Symbol('n', positive=T)
            #               or     unknown  -- 2*Symbol('x')
            if self.is_positive:
                return False
            else:
                return None
        c = terms[0]
        if len(terms) == 1:
            return c.is_negative
        r = self._new_rawargs(*terms[1:])
        # check for nonnegativity, >=0
        if c.is_negative and r.is_nonpositive:
            return False
        if r.is_negative and c.is_nonpositive:
            return False
        if c.is_nonpositive and r.is_nonpositive:
            return False
        if c.is_nonnegative and r.is_nonnegative:
            return False

    def _eval_is_odd(self):
        is_integer = self.is_integer

        if is_integer:
            r = True
            for t in self.args:
                if t.is_even:
                    return False
                if t.is_odd is None:
                    r = None
            return r

        # !integer -> !odd
        elif is_integer == False:
            return False

    def _eval_is_even(self):
        is_integer = self.is_integer

        if is_integer:
            return fuzzy_not(self._eval_is_odd())

        elif is_integer == False:
            return False

    def _eval_subs(self, old, new):

        from sympy import sign
        from sympy.simplify.simplify import powdenest

        if self == old:
            return new

        def fallback():
            """Return this value when partial subs has failed."""

            return self.__class__(*[s._eval_subs(old, new) for s in self.args])

        def breakup(eq):
            """break up powers assuming (not checking) that eq is a Mul:
                   b**(Rational*e) -> b**e, Rational
                commutatives come back as a dictionary {b**e: Rational}
                noncommutatives come back as a list [(b**e, Rational)]
            """

            (c, nc) = (dict(), list())
            for (i, a) in enumerate(Mul.make_args(eq)):
                a = powdenest(a)
                (b, e) = a.as_base_exp()
                if e is not S.One:
                    (co, _) = e.as_coeff_mul()
                    b = Pow(b, e / co)
                    e = co
                if a.is_commutative:
                    if b in c:  # handle I and -1 like things where b, e for I is -1, 1/2
                        c[b] += e
                    else:
                        c[b] = e
                else:
                    nc.append([b, e])
            return (c, nc)

        def rejoin(b, co):
            """
            Put rational back with exponent; in general this is not ok, but
            since we took it from the exponent for analysis, it's ok to put
            it back.
            """

            (b, e) = b.as_base_exp()
            return Pow(b, e * co)

        def ndiv(a, b):
            """if b divides a in an extractive way (like 1/4 divides 1/2
            but not vice versa, and 2/5 does not divide 1/3) then return
            the integer number of times it divides, else return 0.
            """

            if not b.q % a.q or not a.q % b.q:
                return int(a / b)
            return 0

        if not old.is_Mul:
            return fallback()

        # handle the leading coefficient and use it to decide if anything
        # should even be started; we always know where to find the Rational
        # so it's a quick test

        co_self = self.args[0]
        co_old = old.args[0]
        if co_old.is_Rational and co_self.is_Rational:
            co_xmul = co_self.extract_multiplicatively(co_old)
        elif co_old.is_Rational:
            co_xmul = None
        else:
            co_xmul = True

        if not co_xmul:
            return fallback()

        (c, nc) = breakup(self)
        (old_c, old_nc) = breakup(old)

        # update the coefficients if we had an extraction

        if getattr(co_xmul, 'is_Rational', False):
            c.pop(co_self)
            c[co_xmul] = S.One
            old_c.pop(co_old)

        # Do some quick tests to see whether we can succeed:
        # 1) check for more non-commutative or 2) commutative terms
        # 3) ... unmatched non-commutative bases
        # 4) ... unmatched commutative terms
        # 5) and finally differences in sign
        if len(old_nc) > len(nc) or len(old_c) > len(c) or \
                set(_[0] for _ in old_nc).difference(set(_[0] for _ in nc)) or \
                set(old_c).difference(set(c)) or \
                any(sign(c[b]) != sign(old_c[b]) for b in old_c):
            return fallback()

        if not old_c:
            cdid = None
        else:
            rat = []
            for (b, old_e) in old_c.items():
                c_e = c[b]
                rat.append(ndiv(c_e, old_e))
                if not rat[-1]:
                    return fallback()
            cdid = min(rat)

        if not old_nc:
            ncdid = None
            for i in range(len(nc)):
                nc[i] = rejoin(*nc[i])
        else:
            ncdid = 0  # number of nc replacements we did
            take = len(old_nc)  # how much to look at each time
            limit = cdid or S.Infinity  # max number that we can take
            failed = []  # failed terms will need subs if other terms pass
            i = 0
            while limit and i + take <= len(nc):
                hit = False

                # the bases must be equivalent in succession, and
                # the powers must be extractively compatible on the
                # first and last factor but equal inbetween.

                rat = []
                for j in range(take):
                    if nc[i + j][0] != old_nc[j][0]:
                        break
                    elif j == 0:
                        rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
                    elif j == take - 1:
                        rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
                    elif nc[i + j][1] != old_nc[j][1]:
                        break
                    else:
                        rat.append(1)
                    j += 1
                else:
                    ndo = min(rat)
                    if ndo:
                        if take == 1:
                            if cdid:
                                ndo = min(cdid, ndo)
                            nc[i] = Pow(new, ndo) * rejoin(
                                nc[i][0], nc[i][1] - ndo * old_nc[0][1])
                        else:
                            ndo = 1

                            # the left residual

                            l = rejoin(nc[i][0], nc[i][1] - ndo * old_nc[0][1])

                            # eliminate all middle terms

                            mid = new

                            # the right residual (which may be the same as the middle if take == 2)

                            ir = i + take - 1
                            r = (nc[ir][0], nc[ir][1] - ndo * old_nc[-1][1])
                            if r[1]:
                                if i + take < len(nc):
                                    nc[i:i + take] = [l * mid, r]
                                else:
                                    r = rejoin(*r)
                                    nc[i:i + take] = [l * mid * r]
                            else:

                                # there was nothing left on the right

                                nc[i:i + take] = [l * mid]

                        limit -= ndo
                        ncdid += ndo
                        hit = True
                if not hit:

                    # do the subs on this failing factor

                    failed.append(i)
                i += 1
            else:

                if not ncdid:
                    return fallback()

                # although we didn't fail, certain nc terms may have
                # failed so we rebuild them after attempting a partial
                # subs on them

                failed.extend(range(i, len(nc)))
                for i in failed:
                    nc[i] = rejoin(*nc[i]).subs(old, new)

        # rebuild the expression

        if cdid is None:
            do = ncdid
        elif ncdid is None:
            do = cdid
        else:
            do = min(ncdid, cdid)

        margs = []
        for b in c:
            if b in old_c:

                # calculate the new exponent

                e = c[b] - old_c[b] * do
                margs.append(rejoin(b, e))
            else:
                margs.append(rejoin(b.subs(old, new), c[b]))
        if cdid and not ncdid:

            # in case we are replacing commutative with non-commutative,
            # we want the new term to come at the front just like the
            # rest of this routine

            margs = [Pow(new, cdid)] + margs
        return Mul(*margs) * Mul(*nc)

    def _eval_nseries(self, x, n, logx):
        from sympy import powsimp
        terms = [t.nseries(x, n=n, logx=logx) for t in self.args]
        return powsimp(Mul(*terms).expand(), combine='exp', deep=True)

    def _eval_as_leading_term(self, x):
        return Mul(*[t.as_leading_term(x) for t in self.args])

    def _eval_conjugate(self):
        return Mul(*[t.conjugate() for t in self.args])

    def _sage_(self):
        s = 1
        for x in self.args:
            s *= x._sage_()
        return s

    def as_content_primitive(self):
        """Return the tuple (R, self/R) where R is the positive Rational
        extracted from self.

        Examples
        ========
        >>> from sympy import sqrt
        >>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive()
        (6, -sqrt(2)*(-sqrt(2) + 1))

        See docstring of Expr.as_content_primitive for more examples.
        """

        coef = S.One
        args = []
        for i, a in enumerate(self.args):
            c, p = a.as_content_primitive()
            coef *= c
            if p is not S.One:
                args.append(p)
        # don't use self._from_args here to reconstruct args
        # since there may be identical args now that should be combined
        # e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x))
        return coef, Mul(*args)