Esempio n. 1
0
def building_selector_callback(
    selected_building_id,
    n_clicks,
    price_of_initial_installation,
    marginal_price_of_peak_power,
    price_of_purchased_electricity,
    grid_output_percentage,
    investment_years
):
    print('callback')
    datasets = dict(
        yearly_solar_radiation_ratio=calculate_percentage_of_yearly_radiation(),
        electricity_supply_emission_factor=calculate_electricity_supply_emission_factor()['EmissionFactor'],
        electricity_spot_price=fingrid_price.purchase_price_of_production_imbalance_power,
    )

    variables = dict(
        price_of_initial_installation=price_of_initial_installation,
        marginal_price_of_peak_power=marginal_price_of_peak_power,
        price_of_purchased_electricity=price_of_purchased_electricity / 100,
        grid_output_percentage=grid_output_percentage / 100,
        investment_years=investment_years,
    )

    if selected_building_id is None:
        perc_sol = datasets['yearly_solar_radiation_ratio']
        trace = go.Scatter(y=perc_sol, x=perc_sol.index, mode='lines')
        layout = make_layout(title='Aurinkosäteily Kumpulassa')
        fig = go.Figure(data=[trace], layout=layout)

        card = GraphCard(id='solar_radiation')
        card.set_figure(fig)

        return html.Div([
            dbc.Row([
                dbc.Col([card.render()]),
            ]),
        ])

    building = buildings_with_pv.loc[selected_building_id]

    df = pd.read_parquet('data/nuuka/%s.parquet' % selected_building_id)
    el_samples = df[df.sensor_id.isin(electricity_sensors.index)]
    el_samples = el_samples.groupby(['building_id', 'time']).value.sum().reset_index()

    sim = analyze_building(building, el_samples, None, variables, datasets)
    if sim is not None:
        out = html.Div([
            visualize_building_pv_summary(building, sim, variables)
        ])
    else:
        out = html.Div()

    return out
Esempio n. 2
0
def render_result_graphs(df):
    hc_cols = (
        ('available_hospital_beds', _('Hospital beds')),
        ('available_icu_units', _('ICU units')),
    )
    traces = []
    for col, name in hc_cols:
        t = dict(
            type='scatter', name=name, x=df.index, y=df[col], mode='lines',
            hovertemplate='%{y:d}', hoverlabel=dict(namelength=-1),
        )
        traces.append(t)

    card = GraphCard('healthcare', graph=dict(config=dict(responsive=False)))
    layout = make_layout(
        title=_('Free capacity in the healthcare system'), height=250, showlegend=True,
        margin=dict(r=250)
    )
    fig = dict(data=traces, layout=layout)
    card.set_figure(fig)
    c2 = card.render()

    df['ifr'] = df.dead.divide(df.all_infected.replace(0, np.inf)) * 100
    df['cfr'] = df.dead.divide(df.all_detected.replace(0, np.inf)) * 100
    df['r'] = df['r'].rolling(window=7).mean()

    param_cols = (
        ('r', _('Reproductive number (Rₜ)')),
        ('ifr', _('Infection fatality ratio (IFR, %')),
        ('cfr', _('Case fatality ratio (CFR, %')),
    )
    card = GraphCard('params', graph=dict(config=dict(responsive=False)))
    traces = []
    for col, name in param_cols:
        t = dict(
            type='scatter', name=name, x=df.index, y=df[col], mode='lines',
            hovertemplate='%{y:.2f}', hoverlabel=dict(namelength=-1),
        )
        traces.append(t)
    layout = make_layout(
        title=_('Epidemic parameters'), height=250, showlegend=True,
        margin=dict(r=250)
    )
    fig = dict(data=traces, layout=layout)
    card.set_figure(fig)
    c3 = card.render()

    return dbc.Row([
        dbc.Col(render_population_card(df), md=12),
        dbc.Col(c2, md=12),
        dbc.Col(c3, md=12),
        dbc.Col(render_validation_card(df), md=12),
    ])
Esempio n. 3
0
def render_validation_card(df):
    det = get_detected_cases()
    det = det[det['confirmed'] > 0]

    det.index = pd.DatetimeIndex(det.index)
    max_date = det.index.max()
    df = df[df.index <= max_date]

    traces = []
    for col_name in ('all_detected', 'hospitalized', 'in_icu', 'dead'):
        col = [x for x in POP_COLS if x[0] == col_name][0]
        traces.append(
            dict(
                type='scatter',
                mode='lines',
                line=dict(color=COLUMN_COLORS[col_name]),
                name=col[2] + ' ' + _('(simulated)'),
                x=df.index,
                y=df[col_name],
                hovertemplate='%{y:d}',
                hoverlabel=dict(namelength=-1),
            ))
        col_name_map = {
            'all_detected': 'confirmed',
        }
        det_col_name = col_name_map.get(col_name, col_name)
        traces.append(
            dict(
                type='scatter',
                mode='markers',
                line=dict(color=COLUMN_COLORS[col_name]),
                name=col[2] + ' ' + _('(real)'),
                x=det.index,
                y=det[det_col_name],
                hovertemplate='%{y:d}',
                hoverlabel=dict(namelength=-1),
            ))

    card = GraphCard('validation',
                     graph=dict(config=dict(
                         responsive=False,
                         displayModeBar=True,
                     )))
    layout = make_layout(title=_('Validation'),
                         height=250,
                         showlegend=True,
                         margin=dict(r=250),
                         xaxis=dict(fixedrange=False))
    fig = dict(data=traces, layout=layout)
    card.set_figure(fig)
    return card.render()
Esempio n. 4
0
def render_population_card(df):
    traces = generate_population_traces(df)
    card = GraphCard('population', graph=dict(config=dict(responsive=False)))
    shapes, annotations, bar_count = make_intervention_shapes(df)

    layout = make_layout(title=_('Population'),
                         height=250 + bar_count * IV_BAR_PIXELS,
                         showlegend=True,
                         margin=dict(r=250, b=50 + bar_count * IV_BAR_PIXELS),
                         shapes=shapes,
                         annotations=annotations)
    fig = dict(data=traces, layout=layout)
    card.set_figure(fig)
    return card.render()
Esempio n. 5
0
def render_page():
    fig = generate_buildings_forecast_graph()
    ret = dbc.Row([
        dbc.Col([GraphCard(id='buildings', graph=dict(figure=fig)).render()],
                md=8)
    ])

    return ret
Esempio n. 6
0
def render_page():
    slider = dict(
        min=-20,
        max=20,
        step=5,
        value=get_variable('population_forecast_correction'),
        marks={x: '%d %%' % x for x in range(-20, 20 + 1, 5)},
    )
    card = GraphCard(id='population', slider=slider).render()
    return dbc.Row(dbc.Col(card, md=6))
    def get_content(self):
        lang = get_active_locale()
        main_sector_name = self.emission_sector[0]
        main_sector_metadata = SECTORS[main_sector_name]

        cols = []

        edf = predict_emissions().dropna(axis=1, how='all')
        forecast = edf.pop('Forecast')
        edf = edf[main_sector_name]

        subsectors = main_sector_metadata['subsectors']
        colors = generate_color_scale(main_sector_metadata['color'],
                                      len(subsectors))

        graph = PredictionFigure(sector_name=main_sector_name,
                                 unit_name='kt',
                                 title=_('Total emissions'),
                                 smoothing=True,
                                 fill=True,
                                 stacked=True,
                                 legend=True,
                                 legend_x=0.8)

        for idx, (sector_name,
                  sector_metadata) in enumerate(subsectors.items()):
            df = pd.DataFrame(edf[sector_name])
            df['Forecast'] = forecast

            fig = self.make_sector_fig(df, sector_name, sector_metadata,
                                       colors[idx])
            sector_page = get_page_for_emission_sector(main_sector_name,
                                                       sector_name)
            card = GraphCard(id='emissions-%s-%s' %
                             (main_sector_name, sector_name),
                             graph=dict(figure=fig),
                             link_to_page=sector_page)
            cols.append(dbc.Col(card.render(), md=6))

            # Add the summed sector to the all emissions graph
            df = df.drop(columns=['Forecast'])
            s = df.sum(axis=1)
            s.name = 'Emissions'
            df = pd.DataFrame(s)
            df['Forecast'] = forecast
            graph.add_series(df=df,
                             trace_name=sector_metadata.get(
                                 'name_%s' % lang, sector_metadata['name']),
                             column_name='Emissions',
                             historical_color=colors[idx])

        self.total_emissions = edf.iloc[-1].sum()

        card = GraphCard(id='%s-emissions-total' % main_sector_name,
                         graph=dict(figure=graph.get_figure()))

        return html.Div([
            dbc.Row(dbc.Col(card.render())),
            dbc.Row(cols),
        ])
Esempio n. 8
0
def render_page():
    cols = []
    edf = predict_emissions().dropna(axis=1, how='all')
    forecast = edf.pop('Forecast')
    graph = PredictionFigure(sector_name=None,
                             unit_name='kt',
                             title='Päästöt yhteensä',
                             smoothing=True,
                             fill=True,
                             stacked=True,
                             legend=True,
                             legend_x=0.8)
    for sector_name, sector_metadata in SECTORS.items():
        df = pd.DataFrame(edf[sector_name])
        df['Forecast'] = forecast

        fig = make_sector_fig(df, sector_name, sector_metadata)
        sector_page = get_page_for_emission_sector(sector_name, None)
        card = GraphCard(id='emissions-%s' % sector_name,
                         graph=dict(figure=fig),
                         link_to_page=sector_page)
        cols.append(dbc.Col(card.render(), md=6))

        # Add the summed sector to the all emissions graph
        df = df.drop(columns=['Forecast'])
        s = df.sum(axis=1)
        s.name = 'Emissions'
        df = pd.DataFrame(s)
        df['Forecast'] = forecast
        graph.add_series(df=df,
                         trace_name=sector_metadata['name'],
                         column_name='Emissions',
                         historical_color=sector_metadata['color'])

    target_year = get_variable('target_year')
    ref_year = get_variable('ghg_reductions_reference_year')
    perc_off = get_variable('ghg_reductions_percentage_in_target_year')

    last_hist_year = edf.loc[~forecast].index.max()
    last_hist = edf.loc[last_hist_year].sum()
    end_emissions = edf.loc[target_year].sum()
    ref_emissions = edf.loc[ref_year].sum()
    target_emissions = ref_emissions * (1 - perc_off / 100)

    target_year_emissions = edf.loc[target_year].sum()
    sticky = StickyBar(
        label='Päästövähennykset yhteensä',
        goal=last_hist - target_emissions,
        value=last_hist - end_emissions,
        unit='kt',
        below_goal_good=False,
    )

    card = GraphCard(id='emissions-total',
                     graph=dict(figure=graph.get_figure()))

    return html.Div(
        [dbc.Row(dbc.Col(card.render())),
         dbc.Row(cols),
         sticky.render()])
Esempio n. 9
0
def render_page():
    cols = []
    edf = predict_emissions().set_index('Year')
    forecast = edf.groupby('Year')['Forecast'].first()
    graph = PredictionGraph(sector_name=None,
                            unit_name='kt',
                            title='Päästöt yhteensä',
                            smoothing=True,
                            fill=True,
                            stacked=True)
    for sector_name, sector_metadata in SECTORS.items():
        df = edf.loc[edf.Sector1 == sector_name,
                     ['Sector2', 'Forecast', 'Emissions']]
        df = df.pivot(columns='Sector2', values='Emissions')
        df['Forecast'] = forecast
        fig = make_sector_fig(df, sector_name, sector_metadata)
        sector_page = get_page_for_emission_sector(sector_name, None)
        card = GraphCard(id='emissions-%s' % sector_name,
                         graph=dict(figure=fig),
                         link_to_page=sector_page)
        cols.append(dbc.Col(card.render(), md=6))

        # Add the summed sector to the all emissions graph
        df = df.drop(columns=['Forecast'])
        s = df.sum(axis=1)
        s.name = 'Emissions'
        df = pd.DataFrame(s)
        df['Forecast'] = forecast
        graph.add_series(df=df,
                         trace_name=sector_metadata['name'],
                         column_name='Emissions',
                         historical_color=sector_metadata['color'])

    target_year = get_variable('target_year')
    ref_year = get_variable('ghg_reductions_reference_year')
    perc_off = get_variable('ghg_reductions_percentage_in_target_year')

    ref_emissions = edf.loc[ref_year].Emissions.sum()
    target_emissions = ref_emissions * (1 - perc_off / 100)

    target_year_emissions = edf.loc[target_year].Emissions.sum()
    sticky = StickyBar(
        label='Päästöt yhteensä',
        goal=target_emissions,
        value=target_year_emissions,
        unit='kt',
        below_goal_good=True,
    )

    card = GraphCard(id='emissions-total',
                     graph=dict(figure=graph.get_figure()))

    return html.Div(
        [dbc.Row(cols),
         dbc.Row(dbc.Col(card.render())),
         sticky.render()])
Esempio n. 10
0
def render_page():
    els = []
    els.append(
        dbc.Row([
            dbc.Col([
                dbc.Row(children=[
                    dbc.Col(m.render(), md=6, className='mb-4')
                    for m in production_methods
                ]),
                dbc.Row(
                    dbc.Col(
                        GraphCard(
                            id='district-heating-emission-factor').render())),
                dbc.Row(
                    dbc.Col(
                        GraphCard(id='district-heating-production').render())),
                dbc.Row(
                    dbc.Col(html.Div(id='district-heating-table-container'))),
            ],
                    md=8),
        ]))
    els.append(
        html.Div(id='district-heating-prod-sticky-page-summary-container'))
    return html.Div(els)
Esempio n. 11
0
def render_page():
    content = dbc.Row([
        dbc.Col([
            GraphCard(id='district-heating-production').render(),
            html.Div(id='district-heating-table-container'),
        ],
                md=8),
        dbc.Col([
            html.H5('Biopolttoaineen päästökerroin'),
            html.Small('(suhteessa fysikaaliseen päästökertoimeen)'),
            dcc.Slider(id='bio-emission-factor',
                       value=get_variable('bio_emission_factor'),
                       min=0,
                       max=150,
                       step=10,
                       marks={x: '%d %%' % x
                              for x in range(0, 150 + 1, 25)}),
            *generate_ratio_sliders(),
            html.H5('Tuotantotapaosuudet 2035', className='mt-4'),
            dcc.Graph(id='district-heating-production-source-graph'),
        ],
                md=4),
    ])
    return content
Esempio n. 12
0
def render_page():
    grid = ConnectedCardGrid()

    per_capita_card = GraphCard(
        id='electricity-consumption-per-capita',
        slider=dict(
            min=-50,
            max=20,
            step=5,
            value=int(
                get_variable('electricity_consumption_per_capita_adjustment') *
                10),
            marks={x: '%d %%' % (x / 10)
                   for x in range(-50, 20 + 1, 10)},
        ))
    solar_card = GraphCard(id='electricity-consumption-solar-production',
                           link_to_page=('ElectricityConsumption',
                                         'SolarProduction'))
    grid.make_new_row()
    grid.add_card(per_capita_card)
    grid.add_card(solar_card)

    consumption_card = GraphCard(id='electricity-consumption')
    emission_factor_card = GraphCard(
        id='electricity-consumption-emission-factor')
    per_capita_card.connect_to(consumption_card)
    solar_card.connect_to(consumption_card)

    grid.make_new_row()
    grid.add_card(consumption_card)
    grid.add_card(emission_factor_card)

    emission_card = GraphCard(id='electricity-consumption-emissions')
    consumption_card.connect_to(emission_card)
    emission_factor_card.connect_to(emission_card)

    grid.make_new_row()
    grid.add_card(emission_card)

    return html.Div(children=[
        grid.render(),
        html.Div(id='electricity-consumption-summary-bar')
    ])
Esempio n. 13
0
def render_model_param_graphs(age):
    PERIOD_PARAMS = (
        ('incubation_period', _('Incubation period')),
        ('illness_period', _('Illness period')),
        ('hospitalization_period',
         _('Duration of regular hospital treatment')),
        ('icu_period', _('Duration of ICU treatment')),
    )

    period_cards = []
    for param, label in PERIOD_PARAMS:
        card = GraphCard(param, graph=dict(config=dict(responsive=False)))
        layout = make_layout(
            title=label,
            height=250,
            yaxis=dict(title='%'),
            xaxis=dict(title=_('days')),
        )
        traces = []
        if param == 'incubation_period':
            sample = sample_model_parameters(param, age)
            sample = sample * 100 / sample.sum()
            trace = dict(
                type='bar',
                x=sample.index,
                y=sample.values,
                hovertemplate='%{y} %',
                name='',
            )
            traces.append(trace)
        else:
            for severity in ('ASYMPTOMATIC', 'MILD', 'SEVERE', 'CRITICAL',
                             'FATAL'):
                if param == 'icu_period' and severity in ('ASYMPTOMATIC',
                                                          'MILD', 'SEVERE'):
                    continue
                if param == 'hospitalization_period' and severity in (
                        'ASYMPTOMATIC', 'MILD'):
                    continue
                sample = sample_model_parameters(param, age, severity)
                sample = sample * 100 / sample.sum()
                trace = go.Bar(type='bar',
                               x=sample.index,
                               y=sample.values,
                               hovertemplate='%{y} %',
                               name=str(SYMPTOM_MAP[severity]),
                               marker_color=SYMPTOM_COLOR_MAP[severity])
                traces.append(trace)
            layout['barmode'] = 'group'
            layout['showlegend'] = True

        fig = dict(layout=layout, data=traces)
        card.set_figure(fig)
        period_cards.append(card.render())

    sample = sample_model_parameters('symptom_severity', age)
    sample.index = sample.index.map(SYMPTOM_MAP)
    card = GraphCard('symptom-severity',
                     graph=dict(config=dict(responsive=False)))
    layout = make_layout(
        title=_('Symptom severity'),
        height=250,
        showlegend=False,
        yaxis=dict(title='%'),
    )
    sample = sample * 100 / sum(sample)
    trace = dict(type='bar', x=sample.index, y=sample.values)
    fig = dict(layout=layout, data=[trace])
    card.set_figure(fig)
    c2 = card.render()

    sample = sample_model_parameters('contacts_per_day', age)
    card = GraphCard('contacts_per_day',
                     graph=dict(config=dict(responsive=False)))
    layout = make_layout(
        title=_('Contacts per day'),
        height=250,
        showlegend=False,
        yaxis=dict(title='%', ),
        xaxis=dict(title=_('number of contacts')),
    )
    sample = sample.reindex(range(0, 100), fill_value=0)
    sample = sample * 100 / sum(sample)
    trace = dict(type='bar', x=sample.index, y=sample.values)
    fig = dict(layout=layout, data=[trace])
    card.set_figure(fig)
    c3 = card.render()

    sample = sample_model_parameters('infectiousness', age)
    sample *= 100
    card = GraphCard('infectiousness',
                     graph=dict(config=dict(responsive=False)))
    layout = make_layout(
        title=_('Infectiousness over time'),
        height=250,
        showlegend=False,
        yaxis=dict(title='%', ),
        xaxis=dict(
            title=_('Day of illness'),
            range=[-2, 14],
        ),
    )
    trace = dict(
        type='lines',
        x=sample.index,
        y=sample.values,
        line=dict(shape='spline', smoothing=0.3),
    )
    fig = dict(layout=layout, data=[trace])
    card.set_figure(fig)
    c4 = card.render()

    return html.Div([
        dbc.Row([
            dbc.Col(c2, md=6),
            dbc.Col(c3, md=6),
            dbc.Col(c4, md=6), *[dbc.Col(c, md=6) for c in period_cards]
        ],
                className='mt-4')
    ])
Esempio n. 14
0
def generate_page():
    grid = ConnectedCardGrid()

    existing_card = GraphCard(
        id='district-heating-existing-building-unit-heat-factor',
        slider=dict(
            min=-60,
            max=20,
            step=5,
            value=get_variable(
                'district_heating_existing_building_efficiency_change') * 10,
            marks={x: '%.1f %%' % (x / 10)
                   for x in range(-60, 20 + 1, 10)},
        ))
    new_card = GraphCard(
        id='district-heating-new-building-unit-heat-factor',
        slider=dict(
            min=-60,
            max=20,
            step=5,
            value=get_variable(
                'district_heating_new_building_efficiency_change') * 10,
            marks={x: '%.1f %%' % (x / 10)
                   for x in range(-60, 20 + 1, 10)},
        ),
    )
    geo_card = GraphCard(id='district-heating-geothermal-production',
                         link_to_page=('BuildingHeating', 'GeothermalHeating'))

    row = grid.make_new_row()
    row.add_card(existing_card)
    row.add_card(new_card)
    row.add_card(geo_card)

    consumption_card = GraphCard(
        id='district-heating-consumption',
        extra_content=html.Div(id='district-heating-unit-emissions-card'))
    existing_card.connect_to(consumption_card)
    new_card.connect_to(consumption_card)
    geo_card.connect_to(consumption_card)

    row = grid.make_new_row()
    row.add_card(consumption_card)

    emissions_card = GraphCard(id='district-heating-consumption-emissions')
    consumption_card.connect_to(emissions_card)
    row = grid.make_new_row()
    row.add_card(emissions_card)

    return html.Div([
        grid.render(),
        html.Div(id='district-heating-sticky-page-summary-container')
    ])
Esempio n. 15
0
def visualize_building_pv_summary(building, df, variables):
    x = df.SolarPeakPower

    t1 = go.Scatter(
        x=x,
        y=df.InstallationPrice / variables['investment_years'] / 1000,
        mode='lines',
        name='Investointikustannukset (per vuosi, %d v)' % variables['investment_years'],
        marker=dict(color='red')
    )
    t2 = go.Scatter(
        x=x,
        y=(df.EnergyCostSavings + df.EnergySalesIncome) / 1000,
        mode='lines',
        name='Säästö (per vuosi)',
        marker=dict(color='green'),
    )
    t3 = go.Scatter(
        x=x,
        y=df.EmissionReductionCost,
        mode='lines',
        name='Päästövähennyksen hinta',
        yaxis='y2',
        marker=dict(color='grey'),
    )
    layout = make_layout(
        title='Aurinkopaneelien tuottoennuste: %s' % ' '.join(building.description.split(' ')[1:]),
        yaxis=dict(
            title='1 000 €',
            hoverformat='.3r',
            rangemode='tozero',
            separatethousands=True,
        ),
        yaxis2=dict(
            overlaying='y',
            side='right',
            title='€ / (kg / a)',
            rangemode='tozero',
            hoverformat='.2r',
            showgrid=False,
        ),
        xaxis=dict(
            title='kWp',
            hoverformat='.2r',
        ),
        separators=', ',
        margin=go.layout.Margin(
            t=30,
            r=60,
            l=60,
        ),
        showlegend=True,
        legend=dict(x=0, y=1),
    )

    fig = go.Figure(data=[t1, t2, t3], layout=layout)

    card = GraphCard(id='pv-summary')
    card.set_figure(fig)
    return html.Div([
        dbc.Row([
            dbc.Col([
                card.render()
            ], md=12),
        ]),
        dcc.Loading(id="loading-2", children=[
            html.Div(id="pv-details-placeholder")
        ], type="default")
    ])
Esempio n. 16
0
def generate_page():
    grid = ConnectedCardGrid()
    bev_perc_card = GraphCard(
        id='cars-bev-percentage',
        slider=dict(
            min=0,
            max=100,
            step=5,
            value=get_variable('cars_bev_percentage'),
            marks={x: '%d %%' % x for x in range(0, 100 + 1, 10)},
        ),
    )
    per_resident_card = GraphCard(
        id='cars-mileage-per-resident',
        slider=dict(
            min=-60,
            max=20,
            step=5,
            value=get_variable('cars_mileage_per_resident_adjustment'),
            marks={x: '%d %%' % (x) for x in range(-60, 20 + 1, 10)},
        ),
    )
    mileage_card = GraphCard(
        id='cars-total-mileage',
    )
    emission_factor_card = GraphCard(
        id='cars-emission-factor',
    )
    emissions_card = GraphCard(
        id='cars-emissions',
    )
    """
    biofuel_card = GraphCard(
        id='cars-biofuel-percentage',
    )
    """
    grid.make_new_row()
    grid.add_card(bev_perc_card)
    #grid.add_card(biofuel_card)
    grid.add_card(per_resident_card)
    grid.make_new_row()
    grid.add_card(emission_factor_card)
    grid.add_card(mileage_card)
    grid.make_new_row()
    grid.add_card(emissions_card)

    bev_perc_card.connect_to(emission_factor_card)
    #biofuel_card.connect_to(emission_factor_card)
    emission_factor_card.connect_to(emissions_card)

    per_resident_card.connect_to(mileage_card)
    mileage_card.connect_to(emissions_card)

    return html.Div([
        grid.render(),
        html.Div(id='cars-sticky-page-summary-container')
    ])
Esempio n. 17
0
def render_page():
    grid = ConnectedCardGrid()

    per_capita_card = GraphCard(
        id='electricity-consumption-per-capita',
        slider=dict(
            min=-50,
            max=20,
            step=5,
            value=get_variable(
                'electricity_consumption_per_capita_adjustment'),
            marks={x: '%d %%' % (x / 10)
                   for x in range(-50, 20 + 1, 10)},
        ))
    grid.make_new_row()
    grid.add_card(per_capita_card)

    consumption_card = GraphCard(id='electricity-consumption')
    emission_factor_card = GraphCard(
        id='electricity-consumption-emission-factor')
    per_capita_card.connect_to(consumption_card)

    grid.make_new_row()
    grid.add_card(consumption_card)
    grid.add_card(emission_factor_card)

    emission_card = GraphCard(id='electricity-consumption-emissions')
    consumption_card.connect_to(emission_card)
    emission_factor_card.connect_to(emission_card)

    grid.make_new_row()
    grid.add_card(emission_card)

    return grid.render()
Esempio n. 18
0
 def add_graph_card(self, id, **kwargs):
     card_id = self.make_id(id)
     assert card_id not in self.graph_cards
     card = GraphCard(id=card_id, **kwargs)
     self.graph_cards[card_id] = card
     return card
Esempio n. 19
0
def building_base_info_callback(selected_building_id):
    datasets = dict(
        electricity_supply_emission_factor=calculate_electricity_supply_emission_factor()['EmissionFactor'],
    )

    if selected_building_id is None:
        el_s = datasets['electricity_supply_emission_factor']
        el_s = el_s.loc[el_s.index >= '2016']
        el_s = el_s.groupby(pd.Grouper(freq='d')).mean()
        trace = go.Scatter(
            y=el_s, x=el_s.index, mode='lines',
        )
        layout = make_layout(title='Sähkönhankinnan päästökerroin')
        fig = go.Figure(data=[trace], layout=layout)

        card = GraphCard(id='electricity-supply-unit-emissions')
        card.set_figure(fig)

        return html.Div([
            dbc.Row([
                dbc.Col([card.render()]),
            ]),
        ])

    building = buildings_with_pv.loc[selected_building_id]

    samples = pd.read_parquet('data/nuuka/%s.parquet' % selected_building_id)
    samples = samples.query('time < "2019-01-01T00:00:00Z"')

    el_samples = samples[samples.sensor_id.isin(electricity_sensors.index)]
    el_samples = el_samples.groupby(['building_id', 'time']).value.sum().reset_index()
    el_samples = el_samples.set_index('time')
    el_samples['emissions'] = el_samples['value'].mul(datasets['electricity_supply_emission_factor'], axis=0, fill_value=0) / 1000

    dh_samples = samples[samples.sensor_id.isin(heating_sensors.index)].query('value < 30000')
    dh_samples = dh_samples.groupby(['building_id', 'time']).value.sum().reset_index()
    dh_samples = dh_samples.set_index('time')
    dh_samples['emissions'] = dh_samples['value'] * 200 / 1000

    group_freq = 'd'
    el_emissions = el_samples.emissions.groupby(pd.Grouper(freq=group_freq)).sum()

    t1 = go.Scatter(
        x=el_emissions.index,
        y=el_emissions,
        mode='lines',
        line=dict(width=0),
        stackgroup='one',
        name='Sähkönkulutuksen päästöt',
    )
    traces = [t1]

    if not dh_samples.empty:
        dh_emissions = dh_samples.emissions.groupby(pd.Grouper(freq=group_freq)).sum()

        t2 = go.Scatter(
            x=dh_emissions.index,
            y=dh_emissions,
            mode='lines',
            line=dict(width=0),
            stackgroup='one',
            name='Lämmönkulutuksen päästöt'
        )
        traces.append(t2)

    fig = go.Figure(data=traces, layout=make_layout(
        title='Kiinteistön energiankulutuksen päästöt: %s' % ' '.join(building.description.split(' ')[1:]),
        yaxis=dict(
            rangemode='normal',
            title='kg (CO₂e.)'
        ),
        margin=go.layout.Margin(
            t=30,
            r=60,
            l=60,
        ),
        showlegend=True,
        legend=dict(
            x=0,
            y=1,
            bgcolor='#E2E2E2',
        ),
    ))

    card = GraphCard(id='building-all-emissions')
    card.set_figure(fig)
    return card.render()
Esempio n. 20
0
def generate_page():
    grid = ConnectedCardGrid()

    existing_card = GraphCard(
        id='solar-power-existing-buildings',
        slider=dict(
            min=0,
            max=90,
            step=5,
            value=get_variable('solar_power_existing_buildings_percentage'),
            marks={x: '%d %%' % x
                   for x in range(0, 90 + 1, 10)},
        ),
        extra_content=html.Div(id='solar-power-existing-kwpa'),
    )
    new_card = GraphCard(
        id='solar-power-new-buildings',
        slider=dict(
            min=20,
            max=100,
            step=5,
            value=get_variable('solar_power_new_buildings_percentage'),
            marks={x: '%d %%' % x
                   for x in range(20, 100 + 1, 10)},
        ),
        extra_content=html.Div(id='solar-power-new-kwpa'),
    )
    grid.make_new_row()
    grid.add_card(existing_card)
    grid.add_card(new_card)

    production_card = GraphCard(id='solar-power-production')
    existing_card.connect_to(production_card)
    new_card.connect_to(production_card)
    grid.make_new_row()
    grid.add_card(production_card)

    emission_card = GraphCard(id='solar-power-emission-reductions')
    production_card.connect_to(emission_card)
    grid.make_new_row()
    grid.add_card(emission_card)

    return html.Div([
        grid.render(),
        html.Div(id='solar-power-sticky-page-summary-container')
    ])
Esempio n. 21
0
def pv_summary_graph_click(
    click_data,
    selected_building_id,
    price_of_initial_installation,
    marginal_price_of_peak_power,
    price_of_purchased_electricity,
    grid_output_percentage,
    investment_years
):
    print(click_data)
    if not click_data:
        return html.Div()
    perc = click_data['points'][0]['pointNumber']

    datasets = dict(
        yearly_solar_radiation_ratio=calculate_percentage_of_yearly_radiation(),
        electricity_supply_emission_factor=calculate_electricity_supply_emission_factor()['EmissionFactor'],
        electricity_spot_price=fingrid_price.purchase_price_of_production_imbalance_power,
    )

    variables = dict(
        price_of_initial_installation=price_of_initial_installation,
        marginal_price_of_peak_power=marginal_price_of_peak_power,
        price_of_purchased_electricity=price_of_purchased_electricity / 100,
        grid_output_percentage=grid_output_percentage / 100,
        investment_years=investment_years,
    )

    building = buildings_with_pv.loc[selected_building_id]

    df = pd.read_parquet('data/nuuka/%s.parquet' % selected_building_id)
    el_samples = df[df.sensor_id.isin(electricity_sensors.index)]
    el_samples = el_samples.groupby(['building_id', 'time']).value.sum().reset_index()

    res = analyze_building(building, el_samples, perc, variables, datasets)
    summary = res['summary']

    DIV_1000_COLS = (
        'SolarEnergyProduction', 'BuildingEnergyConsumption', 'GridInputReduction',
        'GridEnergyOutput', 'EnergySalesIncome', 'EnergyCostSavings', 'InstallationPrice',
        'NetCosts',
    )
    for col in DIV_1000_COLS:
        summary[col] /= 1000

    tbl = dash_table.DataTable(
        id='pv-details-table',
        columns=[{"name": [translate_sum_col(i), translate_sum_col(i, True)], "id": i} for i in summary.index],
        data=[summary.to_dict()],
        style_table={'overflowX': 'scroll'},
    )

    def fmt_val(x):
        s = '{0:.3}'.format(x)
        if 'e' in s:
            return '%d' % int(float(s))
        else:
            return s

    tbl = dash_table.DataTable(
        id='pv-details-table',
        columns=[{'name': '', 'id': 'name'}, {'name': '', 'id': 'value'}, {'name': 'Yksikkö', 'id': 'unit'}],
        data=[dict(name=translate_sum_col(key), value=fmt_val(val), unit=translate_sum_col(key, True)) for key, val in summary.items()],
    )

    df = res['simulated']

    t1 = dict(
        x=df.index,
        y=-df.Consumption,
        mode='lines',
        line=dict(width=0),
        stackgroup='one',
        name='Kiinteistön sähkönkulutus',
        type='scatter',
    )
    t2 = dict(
        x=df.index,
        y=df.PanelProduction,
        mode='lines',
        line=dict(width=0),
        stackgroup='one',
        name='Aurinkosähköjärjestelmän tuotanto',
        type='scatter',
    )

    fig = dict(data=[t1, t2], layout=make_layout(
        title='Simuloitu aurinkosähköjärjestelmä',
        yaxis=dict(
            rangemode='normal',
            title='kWh'
        ),
        xaxis=dict(
            fixedrange=False
        ),
        margin=dict(
            t=30,
            r=60,
            l=60,
        ),
        showlegend=True,
        legend=dict(
            x=0,
            y=1,
            bgcolor='#E2E2E2',
        ),
    ))

    card = GraphCard(id='simulated-pv-time-series', graph=dict(config=dict(displayModeBar='hover')))
    card.set_figure(fig)

    return html.Div(children=[
        html.Div(children=tbl, className='mb-4'),
        html.Div(children=card.render()),
    ])