def test_train_intercept(self): a1_mat = DenseMatrix(np.mat([[3,4],[5,6]])) a2_mat = DenseMatrix(np.mat([[1,2],[3,4]])) train_data = [("a1", "man", "a1_man"), ("a2", "car", "a2_car"), ("a1", "boy", "a1_boy"), ("a2", "boy", "a2_boy") ] n_mat = DenseMatrix(np.mat([[13,21],[3,4],[5,6]])) n_space = Space(n_mat, ["man", "car", "boy"], self.ft) an1_mat = (a1_mat * n_mat.transpose()).transpose() an2_mat = (a2_mat * n_mat.transpose()).transpose() an_mat = an1_mat.vstack(an2_mat) an_space = Space(an_mat, ["a1_man","a1_car","a1_boy","a2_man","a2_car","a2_boy"], self.ft) #test train model = LexicalFunction(learner=LstsqRegressionLearner(intercept=True)) model._MIN_SAMPLES = 1 model.train(train_data, n_space, an_space) a_space = model.function_space a1_mat.reshape((1,4)) #np.testing.assert_array_almost_equal(a1_mat.mat, # a_space.cooccurrence_matrix.mat[0]) a2_mat.reshape((1,4)) #np.testing.assert_array_almost_equal(a2_mat.mat, # a_space.cooccurrence_matrix.mat[1]) self.assertListEqual(a_space.id2row, ["a1", "a2"]) self.assertTupleEqual(a_space.element_shape, (2,3)) #test compose a1_mat = DenseMatrix(np.mat([[3,4,5,6]])) a2_mat = DenseMatrix(np.mat([[1,2,3,4]])) a_mat = a_space.cooccurrence_matrix a_space = Space(a_mat, ["a1", "a2"], [], element_shape=(2,3)) model = LexicalFunction(function_space=a_space, intercept=True) model._MIN_SAMPLES = 1 comp_space = model.compose(train_data, n_space) self.assertListEqual(comp_space.id2row, ["a1_man", "a2_car", "a1_boy", "a2_boy"]) self.assertListEqual(comp_space.id2column, []) self.assertEqual(comp_space.element_shape, (2,)) np.testing.assert_array_almost_equal(comp_space.cooccurrence_matrix.mat, an_mat[[0,4,2,5]].mat, 8)
def test_intercept_lstsq_regression(self): a = DenseMatrix(np.matrix([[1, 1],[2, 3],[4, 6]])) b = DenseMatrix(np.matrix([[12, 15, 18],[21, 27, 33],[35, 46, 57]])) res = DenseMatrix(np.matrix([[1, 2, 3],[4, 5, 6],[7, 8, 9]])) res1 = Linalg.lstsq_regression(a, b) res2 = Linalg.lstsq_regression(a, b, intercept=True) np.testing.assert_array_almost_equal(res2.mat[:-1,:], res[0:2,:].mat, 6) np.testing.assert_array_almost_equal(res2.mat[-1,:], res[2:3,:].mat, 6) new_a = a.hstack(DenseMatrix(np.ones((a.shape[0], 1)))) self.assertGreater(((a * res1) - b).norm(), ((new_a * res2) - b).norm())
def _dense_svd(matrix_, reduced_dimension): print "Running dense svd" u, s, vt = np.linalg.svd(matrix_.mat, False, True) rank = len(s[s > Linalg._SVD_TOL]) no_cols = min(u.shape[1], reduced_dimension, rank) u = DenseMatrix(u[:,0:no_cols]) s = s[0:no_cols] v = DenseMatrix(vt[0:no_cols,:].transpose()) Linalg._check_reduced_dim(matrix_.shape[1], u.shape[1], reduced_dimension) if not u.is_mostly_positive(): u = -u v = -v return u, s, v
def test_dense_lstsq_regression(self): test_cases = self.pinv_test_cases for m, m_inv in test_cases: m1 = DenseMatrix(m) id_ = DenseMatrix.identity(m1.shape[0]) res = Linalg.lstsq_regression(m1, id_) np.testing.assert_array_almost_equal(res.mat, m_inv, 7)
def test_space_compose_dense(self): test_cases = [([("a","b","a_b")], self.space4, self.space5, DenseMatrix.identity(2), DenseMatrix.identity(2)), ([("a","b","a_b")], self.space4, self.space6, np.mat([[0,0],[0,0]]), np.mat([[0,0],[0,0]])), ([("a","b","a_b"),("a","b","a_a")], self.space4, self.space7, DenseMatrix.identity(2), DenseMatrix.identity(2)), ] for in_data, arg_space, phrase_space, mat_a, mat_b in test_cases: comp_model = FullAdditive(A=mat_a, B=mat_b) comp_space = comp_model.compose(in_data, arg_space) np.testing.assert_array_almost_equal(comp_space.cooccurrence_matrix.mat, phrase_space.cooccurrence_matrix.mat, 10) self.assertListEqual(comp_space.id2column, []) self.assertDictEqual(comp_space.column2id, {}) self.assertListEqual(comp_space.id2row, phrase_space.id2row) self.assertDictEqual(comp_space.row2id, phrase_space.row2id) self.assertFalse(comp_model._has_intercept)
def test_space_compose_sparse(self): #WHAT TO DO HERE??? #PARAMTERS ARE GIVEN AS DENSE MATRICES, INPUT DATA AS SPARSE?? test_cases = [([("a","b","a_b")], self.space1, self.space2, DenseMatrix.identity(2), DenseMatrix.identity(2)), ([("a","b","a_b")], self.space1, self.space3, np.mat([[0,0],[0,0]]), np.mat([[0,0],[0,0]])) ] for in_data, arg_space, phrase_space, mat_a, mat_b in test_cases: comp_model = FullAdditive(A=mat_a, B=mat_b) comp_space = comp_model.compose(in_data, arg_space) np.testing.assert_array_almost_equal(comp_space.cooccurrence_matrix.mat.todense(), phrase_space.cooccurrence_matrix.mat.todense(), 10)
def setUp(self): self.a = np.array([[1, 2, 3], [4, 0, 5]]) self.b = np.array([[0, 0, 0], [0, 0, 0]]) self.c = np.array([[0, 0], [0, 0], [0, 0]]) self.d = np.array([[1, 0], [0, 1]]) self.e = np.array([1, 10]) self.f = np.array([1, 10, 100]) self.matrix_a = DenseMatrix(self.a) self.matrix_b = DenseMatrix(self.b) self.matrix_c = DenseMatrix(self.c) self.matrix_d = DenseMatrix(self.d)
def test_dense_ridge_regression(self): test_cases = self.pinv_test_cases for m, m_inv in test_cases: m1 = DenseMatrix(m) id_ = DenseMatrix.identity(m1.shape[0]) res1 = Linalg.lstsq_regression(m1, id_) np.testing.assert_array_almost_equal(res1.mat, m_inv, 7) res2 = Linalg.ridge_regression(m1, id_, 1)[0] error1 = (m1 * res1 - DenseMatrix(m_inv)).norm() error2 = (m1 * res2 - DenseMatrix(m_inv)).norm() #print "err", error1, error2 norm1 = error1 + res1.norm() norm2 = error2 + res2.norm() #print "norm", norm1, norm2 #THIS SHOULD HOLD, BUT DOES NOT, MAYBE ROUNDING ERROR? #self.assertGreaterEqual(error2, error1) self.assertGreaterEqual(norm1, norm2)
def train(self, matrix_a, matrix_b=None): """ matrix_b is ignored """ W = DenseMatrix.identity(matrix_a.shape[1]) return W
def test_3d(self): # setting up v_mat = DenseMatrix(np.mat([[0,0,1,1,2,2,3,3],#hate [0,1,2,4,5,6,8,9]])) #love vo11_mat = DenseMatrix(np.mat([[0,11],[22,33]])) #hate boy vo12_mat = DenseMatrix(np.mat([[0,7],[14,21]])) #hate man vo21_mat = DenseMatrix(np.mat([[6,34],[61,94]])) #love boy vo22_mat = DenseMatrix(np.mat([[2,10],[17,26]])) #love car train_vo_data = [("hate_boy", "man", "man_hate_boy"), ("hate_man", "man", "man_hate_man"), ("hate_boy", "boy", "boy_hate_boy"), ("hate_man", "boy", "boy_hate_man"), ("love_car", "boy", "boy_love_car"), ("love_boy", "man", "man_love_boy"), ("love_boy", "boy", "boy_love_boy"), ("love_car", "man", "man_love_car") ] # if do not find a phrase # what to do? train_v_data = [("love", "boy", "love_boy"), ("hate", "man", "hate_man"), ("hate", "boy", "hate_boy"), ("love", "car", "love_car")] sentences = ["man_hate_boy", "car_hate_boy", "boy_hate_boy", "man_hate_man", "car_hate_man", "boy_hate_man", "man_love_boy", "car_love_boy", "boy_love_boy", "man_love_car", "car_love_car", "boy_love_car" ] n_mat = DenseMatrix(np.mat([[3,4],[1,2],[5,6]])) n_space = Space(n_mat, ["man", "car", "boy"], self.ft) s1_mat = (vo11_mat * n_mat.transpose()).transpose() s2_mat = (vo12_mat * n_mat.transpose()).transpose() s3_mat = (vo21_mat * n_mat.transpose()).transpose() s4_mat = (vo22_mat * n_mat.transpose()).transpose() s_mat = vo11_mat.nary_vstack([s1_mat,s2_mat,s3_mat,s4_mat]) s_space = Space(s_mat, sentences, self.ft) #test train 2d model = LexicalFunction(learner=LstsqRegressionLearner(intercept=False)) model._MIN_SAMPLES = 1 model.train(train_vo_data, n_space, s_space) vo_space = model.function_space self.assertListEqual(vo_space.id2row, ["hate_boy", "hate_man","love_boy", "love_car"]) self.assertTupleEqual(vo_space.element_shape, (2,2)) vo11_mat.reshape((1,4)) np.testing.assert_array_almost_equal(vo11_mat.mat, vo_space.cooccurrence_matrix.mat[0]) vo12_mat.reshape((1,4)) np.testing.assert_array_almost_equal(vo12_mat.mat, vo_space.cooccurrence_matrix.mat[1]) vo21_mat.reshape((1,4)) np.testing.assert_array_almost_equal(vo21_mat.mat, vo_space.cooccurrence_matrix.mat[2]) vo22_mat.reshape((1,4)) np.testing.assert_array_almost_equal(vo22_mat.mat, vo_space.cooccurrence_matrix.mat[3]) # test train 3d model2 = LexicalFunction(learner=LstsqRegressionLearner(intercept=False)) model2._MIN_SAMPLES = 1 model2.train(train_v_data, n_space, vo_space) v_space = model2.function_space np.testing.assert_array_almost_equal(v_mat.mat, v_space.cooccurrence_matrix.mat) self.assertListEqual(v_space.id2row, ["hate","love"]) self.assertTupleEqual(v_space.element_shape, (2,2,2)) # test compose 3d vo_space2 = model2.compose(train_v_data, n_space) id2row1 = list(vo_space.id2row) id2row2 = list(vo_space2.id2row) id2row2.sort() self.assertListEqual(id2row1, id2row2) row_list = vo_space.id2row vo_rows1 = vo_space.get_rows(row_list) vo_rows2 = vo_space2.get_rows(row_list) np.testing.assert_array_almost_equal(vo_rows1.mat, vo_rows2.mat,7) self.assertTupleEqual(vo_space.element_shape, vo_space2.element_shape)
class TestDenseMatrix(unittest.TestCase): def setUp(self): self.a = np.array([[1, 2, 3], [4, 0, 5]]) self.b = np.array([[0, 0, 0], [0, 0, 0]]) self.c = np.array([[0, 0], [0, 0], [0, 0]]) self.d = np.array([[1, 0], [0, 1]]) self.e = np.array([1, 10]) self.f = np.array([1, 10, 100]) self.matrix_a = DenseMatrix(self.a) self.matrix_b = DenseMatrix(self.b) self.matrix_c = DenseMatrix(self.c) self.matrix_d = DenseMatrix(self.d) def tearDown(self): pass def test_init(self): nparr = self.a test_cases = [nparr, np.mat(nparr), csr_matrix(nparr), csc_matrix(nparr), SparseMatrix(nparr)] for inmat in test_cases: outmat = DenseMatrix(inmat) self.assertIsInstance(outmat.mat, np.matrix) numpy.testing.assert_array_equal(nparr, np.array(outmat.mat)) def test_add(self): test_cases = [ (self.matrix_a, self.matrix_a, np.mat([[2, 4, 6], [8, 0, 10]])), (self.matrix_a, self.matrix_b, self.matrix_a.mat), ] for (term1, term2, expected) in test_cases: sum_ = term1 + term2 numpy.testing.assert_array_equal(sum_.mat, expected) self.assertIsInstance(sum_, type(term1)) def test_add_raises(self): test_cases = [(self.matrix_a, self.a), (self.matrix_a, SparseMatrix(self.a))] for (term1, term2) in test_cases: self.assertRaises(TypeError, term1.__add__, term2) def test_div(self): test_cases = [ (self.matrix_a, 2, np.mat([[0.5, 1.0, 1.5], [2.0, 0.0, 2.5]])), (self.matrix_c, 2, np.mat(self.c)), ] for (term1, term2, expected) in test_cases: sum_ = term1 / term2 numpy.testing.assert_array_equal(sum_.mat, expected) self.assertIsInstance(sum_, DenseMatrix) def test_div_raises(self): test_cases = [ (self.matrix_a, self.a, TypeError), (self.matrix_a, SparseMatrix(self.a), TypeError), (self.matrix_a, "3", TypeError), (self.matrix_a, 0, ZeroDivisionError), ] for (term1, term2, error_type) in test_cases: self.assertRaises(error_type, term1.__div__, term2) def test_mul(self): test_cases = [ (self.matrix_a, self.matrix_c, np.mat([[0, 0], [0, 0]])), (self.matrix_d, self.matrix_a, self.matrix_a.mat), (self.matrix_a, 2, np.mat([[2, 4, 6], [8, 0, 10]])), (2, self.matrix_a, np.mat([[2, 4, 6], [8, 0, 10]])), (self.matrix_a, np.int64(2), np.mat([[2, 4, 6], [8, 0, 10]])), (np.int64(2), self.matrix_a, np.mat([[2, 4, 6], [8, 0, 10]])), ] for (term1, term2, expected) in test_cases: sum_ = term1 * term2 numpy.testing.assert_array_equal(sum_.mat, expected) self.assertIsInstance(sum_, DenseMatrix) def test_mul_raises(self): test_cases = [ (self.matrix_a, self.a), (self.matrix_a, SparseMatrix(self.a)), (self.matrix_a, "3"), ("3", self.matrix_a), ] for (term1, term2) in test_cases: self.assertRaises(TypeError, term1.__mul__, term2) def test_multiply(self): test_cases = [ (self.matrix_a, self.matrix_a, np.mat([[1, 4, 9], [16, 0, 25]])), (self.matrix_a, self.matrix_b, np.mat(self.b)), ] for (term1, term2, expected) in test_cases: mult1 = term1.multiply(term2) mult2 = term2.multiply(term1) numpy.testing.assert_array_equal(mult1.mat, expected) numpy.testing.assert_array_equal(mult2.mat, expected) self.assertIsInstance(mult1, DenseMatrix) self.assertIsInstance(mult2, DenseMatrix) def test_multiply_raises(self): test_cases = [ (self.matrix_a, self.matrix_d, ValueError), (self.matrix_a, self.a, TypeError), (self.matrix_a, SparseMatrix(self.a), TypeError), ] for (term1, term2, error_type) in test_cases: self.assertRaises(error_type, term1.multiply, term2) def test_scale_rows(self): outcome = np.mat([[1, 2, 3], [40, 0, 50]]) test_cases = [(self.matrix_a, self.e, outcome), (self.matrix_a, np.mat(self.e).T, outcome)] for (term1, term2, expected) in test_cases: term1 = term1.scale_rows(term2) numpy.testing.assert_array_equal(term1.mat, expected) def test_scale_columns(self): test_cases = [(self.matrix_a, self.f, np.mat([[1, 20, 300], [4, 0, 500]]))] for (term1, term2, expected) in test_cases: term1 = term1.scale_columns(term2) numpy.testing.assert_array_equal(term1.mat, expected) def test_scale_raises(self): test_cases = [ (self.matrix_a, self.f, ValueError, self.matrix_a.scale_rows), (self.matrix_a, self.e, ValueError, self.matrix_a.scale_columns), (self.matrix_a, self.b, ValueError, self.matrix_a.scale_rows), (self.matrix_a, self.b, ValueError, self.matrix_a.scale_columns), (self.matrix_a, "3", TypeError, self.matrix_a.scale_rows), ] for (term1, term2, error_type, function) in test_cases: self.assertRaises(error_type, function, term2) def test_plog(self): m = DenseMatrix(np.mat([[0.5, 1.0, 1.5], [2.0, 0.0, 2.5]])) m_expected = np.mat([[0.0, 0.0, 0.4054], [0.6931, 0.0, 0.9162]]) a_expected = np.mat([[0.0, 0.6931, 1.0986], [1.3862, 0.0, 1.6094]]) test_cases = [(self.matrix_a.copy(), a_expected), (m, m_expected)] for (term, expected) in test_cases: term.plog() numpy.testing.assert_array_almost_equal(term.mat, expected, 3)
def compute_matreps(self,vecspace,matspace,multiply_matrices=False): ''' This method computes symbolic and numeric matrix representations od a papfunc node, taking as input a vector space, a matrix space. An optional Boolean argument, if set to True, makes matrices to be multiplied rather than summed when both subconstituents have arity greater than 0. ''' # for terminal nodes call insert_terminal_node_representation if self.is_terminal(): matrep,temp_numrep=self.insert_terminal_node_representation(vecspace,matspace) self._matrep = matrep if temp_numrep[0] == "empty": numrep = [] else: numrep = [temp_numrep[0].transpose()] dimensionality=(temp_numrep[0].shape[1]) if len(temp_numrep)>1: # all matrices are stored flattened, as long vectors. We need to # reshape them before we use them in computations for x in range(1, (len(temp_numrep))): y = DenseMatrix(temp_numrep[x]) y.reshape((dimensionality,(y.shape[1]/dimensionality))) numrep.append(y) self._numrep = numrep #raise an exception for a non-terminal node without children elif len(self._children) == 0: raise ValueError("Non-terminal non-branching node!") # inherit the value of the single daughter in case of unary branching if len(self._children) == 1: self._matrep = self.get_child(0)._matrep self._numrep = self.get_child(0)._numrep #apply composition for binary branching nodes if len(self._children) == 2 and self._matrep == []: matrep1=self.get_child(0)._matrep #ignore 'empty' nodes if not matrep1: raise ValueError("Empty matrix representation for node %s!" %self.get_child(0)) matrep2=self.get_child(1)._matrep if not matrep2: raise ValueError("Empty matrix representation for node %s!" %self.get_child(1)) arity1=len(matrep1)-1 arity2=len(matrep2)-1 # first, compute symbolic matrix representation # default to componentwise addition for daughters of equal arity if arity1-arity2 == 0: for x in range(0, arity1+1): self._matrep.append('(' + matrep1[x] + '+' + matrep2[x] + ')') # left function application if arity1 < arity2 and not re.search('empty$',matrep2[0]) and not re.search('empty$',matrep1[0]): for x in range(0, arity2): if x == 0: #compute the vector self._matrep.append('(' + matrep2[x] + '+' + matrep2[arity2] + '*' + matrep1[x] + ')') # compute a matrix # If both daughters have matrices in the xth position in # their vector-matrix structures, add or multiply those # matrices according to the multiply_matrices parameter elif x < len(matrep1): if multiply_matrices: self._matrep.append('(' + matrep2[x] + '*' + matrep1[x] + ')') else: self._matrep.append('(' + matrep2[x] + '+' + matrep1[x] + ')') # inherit the function's extra lexical matrix else: self._matrep.append(matrep2[x]) # right function application if arity1 > arity2 and not re.search('empty$',matrep2[0]) and not re.search('empty$',matrep1[0]): for x in range(0, arity1): if x == 0: self._matrep.append('(' + matrep1[x] + '+' + matrep1[arity1] + '*' + matrep2[x] + ')') # compute a matrix # If both daughters have matrices in the xth position in # their vector-matrix structures, add or multiply those # matrices according to the multiply_matrices parameter elif x < len(matrep2): if multiply_matrices: self._matrep.append('(' + matrep1[x] + '*' + matrep2[x] + ')') else: self._matrep.append('(' + matrep1[x] + '+' + matrep2[x] + ')') else: self._matrep.append(matrep1[x]) # ignore 'empty' elements if re.search('empty$',matrep1[0]): self._matrep = matrep2 if re.search('empty$',matrep2[0]): self._matrep = matrep1 # computing numeric matrix representation of a node from those of its two daughters numrep1=self.get_child(0)._numrep numrep2=self.get_child(1)._numrep if arity1-arity2 == 0 and numrep1 and numrep2: for x in range(0, arity1+1): self._numrep.append(numrep1[x].__add__(numrep2[x])) # left function application if arity1 < arity2 and not numrep1==[] and not numrep2==[]: for x in range(0, arity2): if x == 0: #compute the vector self._numrep.append(numrep2[x].__add__(numrep2[arity2] * padd_matrix(numrep1[x],0))) elif x < len(numrep1): if multiply_matrices: self._numrep.append(numrep2[x] * numrep1[x]) else: self._numrep.append(numrep1[x].__add__(numrep2[x])) else: self._numrep.append(numrep2[x]) # right function application if arity1 > arity2 and not numrep1==[] and not numrep2==[]: for x in range(0, arity1): if x == 0: # compute the vector self._numrep.append(numrep1[x].__add__(numrep1[arity1] * padd_matrix(numrep2[x],0))) elif x < len(numrep2): if multiply_matrices: self._numrep.append(numrep2[x] * numrep1[x]) else: self._numrep.append(numrep1[x].__add__(numrep2[x])) else: self._numrep.append(numrep1[x]) # ignore 'empty' elements if (numrep1 == []): self._numrep = numrep2 if (numrep2 == []): self._numrep = numrep1 # end of numrep computation # Raise an exception for non-binary branching - we don't want to handle those structures if len(self._children)>2: raise ValueError("Matrix representations are not defined for trees with more than binary branching")
def compute_matreps(self,vecspace,matspace,multiply_matrices=False): ''' This method computes symbolic and numeric matrix representations od a papfunc node, taking as input a vector space, a matrix space. An optional Boolean argument, if set to True, makes matrices to be multiplied rather than summed when both subconstituents have arity greater than 0. ''' # for terminal nodes do lexical insertions by calling #insert_terminal_node_representation if self.is_terminal(): matrep,temp_numrep=self.insert_terminal_node_representation(vecspace,matspace) self._matrep = matrep if temp_numrep[0] == "empty": numrep = [] #default semantic representation for syntactic elements we ignore else: numrep = [temp_numrep[0].transpose()] dimensionality=(temp_numrep[0].shape[1]) if len(temp_numrep)>1: # Matrices are "flattened", stored as vectors. # We reshape each matrix to a normal shape (usually square) for x in range(1, (len(temp_numrep))): y = DenseMatrix(temp_numrep[x]) y.reshape((dimensionality,(y.shape[1]/dimensionality))) numrep.append(y) self._numrep = numrep #raise an exception for a non-terminal node without children elif len(self._children) == 0: raise ValueError("Non-terminal non-branching node!") # inherit the value of the single daughter in case of unary branching if len(self._children) == 1: self._matrep = self.get_child(0)._matrep self._numrep = self.get_child(0)._numrep #apply composition for binary branching nodes if len(self._children) == 2 and self._matrep == []: matrep1=self.get_child(0)._matrep if not matrep1: raise ValueError("Empty matrix representation for node %s!" %self.get_child(0)) matrep2=self.get_child(1)._matrep if not matrep2: raise ValueError("Empty matrix representation for node %s!" %self.get_child(1)) #get the arity of two daughter nodes in order to determine which of #them is the function and which is the argument arity1=len(matrep1)-1 arity2=len(matrep2)-1 # first, compute symbolic matrix representation if arity1-arity2 == 0: for x in range(0, arity1+1): self._matrep.append('(' + matrep1[x] + '+' + matrep2[x] + ')') #left application if arity1 < arity2 and not re.search('empty$',matrep2[0]) and not re.search('empty$',matrep1[0]): for x in range(0, arity2): if x == 0: # compute vector of the mother node self._matrep.append('(' + matrep2[x] + '+' + matrep2[arity2] + '*' + matrep1[x] + ')') elif x < len(matrep1): # compute matrices of the mother node if multiply_matrices: self._matrep.append('(' + matrep2[x] + '*' + matrep1[x] + ')') else: self._matrep.append('(' + matrep2[x] + '+' + matrep1[x] + ')') else: self._matrep.append(matrep2[x]) #right application if arity1 > arity2 and not re.search('empty$',matrep2[0]) and not re.search('empty$',matrep1[0]): for x in range(0, arity1): if x == 0: self._matrep.append('(' + matrep1[x] + '+' + matrep1[arity1] + '*' + matrep2[x] + ')') elif x < len(matrep2): if multiply_matrices: self._matrep.append('(' + matrep1[x] + '*' + matrep2[x] + ')') else: self._matrep.append('(' + matrep1[x] + '+' + matrep2[x] + ')') else: self._matrep.append(matrep1[x]) #if one of the daughters is 'empty' (marked to be ignored), ignore it if re.search('empty$',matrep1[0]): self._matrep = matrep2 if re.search('empty$',matrep2[0]): self._matrep = matrep1 # computing numeric matrix representation of a node from those of # its two daughters. # First, get arity of the daughters to establish the directionality # of function application numrep1=self.get_child(0)._numrep numrep2=self.get_child(1)._numrep if arity1-arity2 == 0 and numrep1 and numrep2: for x in range(0, arity1+1): self._numrep.append(numrep1[x].__add__(numrep2[x])) #left application if arity1 < arity2 and not numrep1==[] and not numrep2==[]: for x in range(0, arity2): # compute the vector if x == 0: self._numrep.append(numrep2[x].__add__(numrep2[arity2] * numrep1[x])) # compute a matrix elif x < len(numrep1): if multiply_matrices: self._numrep.append(numrep2[x] * numrep1[x]) else: self._numrep.append(numrep1[x].__add__(numrep2[x])) else: self._numrep.append(numrep2[x]) #right aplication if arity1 > arity2 and not numrep1==[] and not numrep2==[]: for x in range(0, arity1): if x == 0: self._numrep.append(numrep1[x].__add__(numrep1[arity1]*numrep2[x])) elif x < len(numrep2): if multiply_matrices: self._numrep.append(numrep2[x] * numrep1[x]) else: self._numrep.append(numrep1[x].__add__(numrep2[x])) else: self._numrep.append(numrep1[x]) # ignore 'empty' elements in composition if (numrep1 == []): self._numrep = numrep2 if (numrep2 == []): self._numrep = numrep1 # end of numrep computation # Raise an exception for non-binary branching - we don't want to handle those structures if len(self._children)>2: raise ValueError("Matrix representations are not defined for trees with more than binary branching")
def tracenorm_regression(matrix_a , matrix_b, lmbd, iterations, intercept=False): #log.print_info(logger, "In Tracenorm regression..", 4) #log.print_matrix_info(logger, matrix_a, 5, "Input matrix A:") #log.print_matrix_info(logger, matrix_b, 5, "Input matrix B:") """ Performs Trace Norm Regression. This method uses approximate gradient descent to solve the problem: :math:`X = argmin(||AX - B||_2 + \\lambda||X||_*)` where :math:`||X||_*` is the trace norm of :math:`X`, the sum of its singular values. It is implemented for dense matrices only. The algorithm is the Extended Gradient Algorithm from (Ji and Ye, 2009). Args: matrix_a: input matrix A, of type Matrix matrix_b: input matrix A, of type Matrix. If None, it is defined as matrix_a lambda_: scalar, lambda parameter intercept: bool. If True intercept is used. Optional, default False. Returns: solution X of type Matrix """ if intercept: matrix_a = matrix_a.hstack(matrix_type(np.ones((matrix_a.shape[0], 1)))) if matrix_b == None: matrix_b = matrix_a # TODO remove this matrix_a = DenseMatrix(matrix_a).mat matrix_b = DenseMatrix(matrix_b).mat # Matrix shapes p = matrix_a.shape[0] q = matrix_a.shape[1] assert_same_shape(matrix_a, matrix_b, 0) # Initialization of the algorithm W = (1.0/p)* Linalg._kronecker_product(matrix_a) # Sub-expressions reused at various places in the code matrix_a_t = matrix_a.transpose() at_times_a = np.dot(matrix_a_t, matrix_a) # Epsilon: to ensure that our bound on the Lipschitz constant is large enough epsilon_lbound = 0.05 # Expression of the bound of the Lipschitz constant of the cost function L_bound = (1+epsilon_lbound)*2*Linalg._frobenius_norm_squared(at_times_a) # Current "guess" of the local Lipschitz constant L = 1.0 # Factor by which L should be increased when it happens to be too small gamma = 1.2 # Epsilon to ensure that mu is increased when the inequality hold tightly epsilon_cost = 0.00001 # Real lambda: resized according to the number of training samples (?) lambda_ = lmbd*p # Variables used for the accelerated algorithm (check the original paper) Z = W alpha = 1.0 # Halting condition epsilon = 0.00001 last_cost = 1 current_cost = -1 linalg_error_caught = False costs = [] iter_counter = 0 while iter_counter < iterations and (abs((current_cost - last_cost)/last_cost)>epsilon) and not linalg_error_caught: sys.stdout.flush() # Cost tracking try: next_W, tracenorm = Linalg._next_tracenorm_guess(matrix_a, matrix_b, lambda_, L, Z, at_times_a) except LinAlgError: print "LinAlgError caught in trace norm regression" linalg_error_caught = True break last_cost = current_cost current_fitness = Linalg._fitness(matrix_a, matrix_b, next_W) current_cost = current_fitness + lambda_ * tracenorm if iter_counter > 0: # The first scores are messy cost_list = [L, L_bound, current_fitness, current_cost] costs.append(cost_list) while (current_fitness + epsilon_cost >= Linalg._intermediate_cost(matrix_a, matrix_b, next_W, Z, L)): if L > L_bound: print "Trace Norm Regression: numerical error detected at iteration "+str(iter_counter) break L = gamma * L try: next_W, tracenorm = Linalg._next_tracenorm_guess(matrix_a, matrix_b, lambda_, L, Z, at_times_a) except LinAlgError: print "LinAlgError caught in trace norm regression" linalg_error_caught = True break last_cost = current_cost current_fitness = Linalg._fitness(matrix_a, matrix_a, next_W) current_cost = current_fitness + lambda_*tracenorm if linalg_error_caught: break previous_W = W W = next_W previous_alpha = alpha alpha = (1.0 + sqrt(1.0 + 4.0*alpha*alpha))/2.0 Z = W # Z = W + ((alpha - 1)/alpha)*(W - previous_W) iter_counter += 1 sys.stdout.flush() W = np.real(W) return DenseMatrix(W), costs