Esempio n. 1
0
        class Hyperprior(CompressionModel):
            def __init__(self, planes: int = 192, mid_planes: int = 192):
                super().__init__(entropy_bottleneck_channels=mid_planes)
                self.hyper_encoder = HyperEncoder(planes, mid_planes, planes)
                self.hyper_decoder_mean = HyperDecoder(planes, mid_planes,
                                                       planes)
                self.hyper_decoder_scale = HyperDecoderWithQReLU(
                    planes, mid_planes, planes)
                self.gaussian_conditional = GaussianConditional(None)

            def forward(self, y):
                z = self.hyper_encoder(y)
                z_hat, z_likelihoods = self.entropy_bottleneck(z)

                scales = self.hyper_decoder_scale(z_hat)
                means = self.hyper_decoder_mean(z_hat)
                _, y_likelihoods = self.gaussian_conditional(y, scales, means)
                y_hat = quantize_ste(y - means) + means
                return y_hat, {"y": y_likelihoods, "z": z_likelihoods}

            def compress(self, y):
                z = self.hyper_encoder(y)

                z_string = self.entropy_bottleneck.compress(z)
                z_hat = self.entropy_bottleneck.decompress(
                    z_string,
                    z.size()[-2:])

                scales = self.hyper_decoder_scale(z_hat)
                means = self.hyper_decoder_mean(z_hat)

                indexes = self.gaussian_conditional.build_indexes(scales)
                y_string = self.gaussian_conditional.compress(
                    y, indexes, means)
                y_hat = self.gaussian_conditional.quantize(
                    y, "dequantize", means)

                return y_hat, {
                    "strings": [y_string, z_string],
                    "shape": z.size()[-2:]
                }

            def decompress(self, strings, shape):
                assert isinstance(strings, list) and len(strings) == 2
                z_hat = self.entropy_bottleneck.decompress(strings[1], shape)

                scales = self.hyper_decoder_scale(z_hat)
                means = self.hyper_decoder_mean(z_hat)
                indexes = self.gaussian_conditional.build_indexes(scales)
                y_hat = self.gaussian_conditional.decompress(
                    strings[0], indexes, z_hat.dtype, means)

                return y_hat
Esempio n. 2
0
class JointAutoregressiveHierarchicalPriors(CompressionModel):
    r"""Joint Autoregressive Hierarchical Priors model from D.
    Minnen, J. Balle, G.D. Toderici: `"Joint Autoregressive and Hierarchical
    Priors for Learned Image Compression" <https://arxiv.org/abs/1809.02736>`_,
    Adv. in Neural Information Processing Systems 31 (NeurIPS 2018).

    Args:
        N (int): Number of channels
        M (int): Number of channels in the expansion layers (last layer of the
            encoder and last layer of the hyperprior decoder)
    """

    def __init__(self, N=192, M=192, **kwargs):
        super().__init__(entropy_bottleneck_channels=N, **kwargs)

        self.g_a = nn.Sequential(
            conv(3, N, kernel_size=5, stride=2),
            GDN(N),
            conv(N, N, kernel_size=5, stride=2),
            GDN(N),
            conv(N, N, kernel_size=5, stride=2),
            GDN(N),
            conv(N, M, kernel_size=5, stride=2),
        )

        self.g_s = nn.Sequential(
            deconv(M, N, kernel_size=5, stride=2),
            GDN(N, inverse=True),
            deconv(N, N, kernel_size=5, stride=2),
            GDN(N, inverse=True),
            deconv(N, N, kernel_size=5, stride=2),
            GDN(N, inverse=True),
            deconv(N, 3, kernel_size=5, stride=2),
        )

        self.h_a = nn.Sequential(
            conv(M, N, stride=1, kernel_size=3),
            nn.LeakyReLU(inplace=True),
            conv(N, N, stride=2, kernel_size=5),
            nn.LeakyReLU(inplace=True),
            conv(N, N, stride=2, kernel_size=5),
        )

        self.h_s = nn.Sequential(
            deconv(N, M, stride=2, kernel_size=5),
            nn.LeakyReLU(inplace=True),
            deconv(M, M * 3 // 2, stride=2, kernel_size=5),
            nn.LeakyReLU(inplace=True),
            conv(M * 3 // 2, M * 2, stride=1, kernel_size=3),
        )

        self.entropy_parameters = nn.Sequential(
            nn.Conv2d(M * 12 // 3, M * 10 // 3, 1),
            nn.LeakyReLU(inplace=True),
            nn.Conv2d(M * 10 // 3, M * 8 // 3, 1),
            nn.LeakyReLU(inplace=True),
            nn.Conv2d(M * 8 // 3, M * 6 // 3, 1),
        )

        self.context_prediction = MaskedConv2d(
            M, 2 * M, kernel_size=5, padding=2, stride=1
        )

        self.gaussian_conditional = GaussianConditional(None)
        self.N = int(N)
        self.M = int(M)

    def forward(self, x):
        y = self.g_a(x)
        z = self.h_a(y)
        z_hat, z_likelihoods = self.entropy_bottleneck(z)
        params = self.h_s(z_hat)

        y_hat = self.gaussian_conditional.quantize(
            y, "noise" if self.training else "dequantize"
        )
        ctx_params = self.context_prediction(y_hat)
        gaussian_params = self.entropy_parameters(
            torch.cat((params, ctx_params), dim=1)
        )
        scales_hat, means_hat = gaussian_params.chunk(2, 1)
        _, y_likelihoods = self.gaussian_conditional(y, scales_hat, means=means_hat)
        x_hat = self.g_s(y_hat)

        return {
            "x_hat": x_hat,
            "likelihoods": {"y": y_likelihoods, "z": z_likelihoods},
        }

    @classmethod
    def from_state_dict(cls, state_dict):
        """Return a new model instance from `state_dict`."""
        N = state_dict["g_a.0.weight"].size(0)
        M = state_dict["g_a.6.weight"].size(0)
        net = cls(N, M)
        net.load_state_dict(state_dict)
        return net

    def compress(self, x):
        if next(self.parameters()).device != torch.device("cpu"):
            warnings.warn(
                "Inference on GPU is not recommended for the autoregressive "
                "models (the entropy coder is run sequentially on CPU)."
            )

        y = self.g_a(x)
        z = self.h_a(y)

        z_strings = self.entropy_bottleneck.compress(z)
        z_hat = self.entropy_bottleneck.decompress(z_strings, z.size()[-2:])

        params = self.h_s(z_hat)

        s = 4  # scaling factor between z and y
        kernel_size = 5  # context prediction kernel size
        padding = (kernel_size - 1) // 2

        y_height = z_hat.size(2) * s
        y_width = z_hat.size(3) * s

        y_hat = F.pad(y, (padding, padding, padding, padding))

        y_strings = []
        for i in range(y.size(0)):
            string = self._compress_ar(
                y_hat[i : i + 1], params, y_height, y_width, kernel_size, padding
            )
            y_strings.append(string)

        return {"strings": [y_strings, z_strings], "shape": z.size()[-2:]}

    def _compress_ar(self, y_hat, params, height, width, kernel_size, padding):
        cdf = self.gaussian_conditional.quantized_cdf.tolist()
        cdf_lengths = self.gaussian_conditional.cdf_length.tolist()
        offsets = self.gaussian_conditional.offset.tolist()

        encoder = BufferedRansEncoder()
        symbols_list = []
        indexes_list = []

        # Warning, this is slow...
        # TODO: profile the calls to the bindings...
        for h in range(height):
            for w in range(width):
                y_crop = y_hat[:, :, h : h + kernel_size, w : w + kernel_size]
                ctx_p = F.conv2d(
                    y_crop,
                    self.context_prediction.weight,
                    bias=self.context_prediction.bias,
                )

                # 1x1 conv for the entropy parameters prediction network, so
                # we only keep the elements in the "center"
                p = params[:, :, h : h + 1, w : w + 1]
                gaussian_params = self.entropy_parameters(torch.cat((p, ctx_p), dim=1))
                gaussian_params = gaussian_params.squeeze(3).squeeze(2)
                scales_hat, means_hat = gaussian_params.chunk(2, 1)

                indexes = self.gaussian_conditional.build_indexes(scales_hat)

                y_crop = y_crop[:, :, padding, padding]
                y_q = self.gaussian_conditional.quantize(y_crop, "symbols", means_hat)
                y_hat[:, :, h + padding, w + padding] = y_q + means_hat

                symbols_list.extend(y_q.squeeze().tolist())
                indexes_list.extend(indexes.squeeze().tolist())

        encoder.encode_with_indexes(
            symbols_list, indexes_list, cdf, cdf_lengths, offsets
        )

        string = encoder.flush()
        return string

    def decompress(self, strings, shape):
        assert isinstance(strings, list) and len(strings) == 2

        if next(self.parameters()).device != torch.device("cpu"):
            warnings.warn(
                "Inference on GPU is not recommended for the autoregressive "
                "models (the entropy coder is run sequentially on CPU)."
            )

        # FIXME: we don't respect the default entropy coder and directly call the
        # range ANS decoder

        z_hat = self.entropy_bottleneck.decompress(strings[1], shape)
        params = self.h_s(z_hat)

        s = 4  # scaling factor between z and y
        kernel_size = 5  # context prediction kernel size
        padding = (kernel_size - 1) // 2

        y_height = z_hat.size(2) * s
        y_width = z_hat.size(3) * s

        # initialize y_hat to zeros, and pad it so we can directly work with
        # sub-tensors of size (N, C, kernel size, kernel_size)
        y_hat = torch.zeros(
            (z_hat.size(0), self.M, y_height + 2 * padding, y_width + 2 * padding),
            device=z_hat.device,
        )

        for i, y_string in enumerate(strings[0]):
            self._decompress_ar(
                y_string,
                y_hat[i : i + 1],
                params,
                y_height,
                y_width,
                kernel_size,
                padding,
            )

        y_hat = F.pad(y_hat, (-padding, -padding, -padding, -padding))
        x_hat = self.g_s(y_hat).clamp_(0, 1)
        return {"x_hat": x_hat}

    def _decompress_ar(
        self, y_string, y_hat, params, height, width, kernel_size, padding
    ):
        cdf = self.gaussian_conditional.quantized_cdf.tolist()
        cdf_lengths = self.gaussian_conditional.cdf_length.tolist()
        offsets = self.gaussian_conditional.offset.tolist()

        decoder = RansDecoder()
        decoder.set_stream(y_string)

        # Warning: this is slow due to the auto-regressive nature of the
        # decoding... See more recent publication where they use an
        # auto-regressive module on chunks of channels for faster decoding...
        for h in range(height):
            for w in range(width):
                # only perform the 5x5 convolution on a cropped tensor
                # centered in (h, w)
                y_crop = y_hat[:, :, h : h + kernel_size, w : w + kernel_size]
                ctx_p = F.conv2d(
                    y_crop,
                    self.context_prediction.weight,
                    bias=self.context_prediction.bias,
                )
                # 1x1 conv for the entropy parameters prediction network, so
                # we only keep the elements in the "center"
                p = params[:, :, h : h + 1, w : w + 1]
                gaussian_params = self.entropy_parameters(torch.cat((p, ctx_p), dim=1))
                scales_hat, means_hat = gaussian_params.chunk(2, 1)

                indexes = self.gaussian_conditional.build_indexes(scales_hat)
                rv = decoder.decode_stream(
                    indexes.squeeze().tolist(), cdf, cdf_lengths, offsets
                )
                rv = torch.Tensor(rv).reshape(1, -1, 1, 1)
                rv = self.gaussian_conditional.dequantize(rv, means_hat)

                hp = h + padding
                wp = w + padding
                y_hat[:, :, hp : hp + 1, wp : wp + 1] = rv

    def update(self, scale_table=None, force=False):
        if scale_table is None:
            scale_table = get_scale_table()
        self.gaussian_conditional.update_scale_table(scale_table, force=force)
        super().update(force=force)

    def load_state_dict(self, state_dict):
        # Dynamically update the entropy bottleneck buffers related to the CDFs
        update_registered_buffers(
            self.entropy_bottleneck,
            "entropy_bottleneck",
            ["_quantized_cdf", "_offset", "_cdf_length"],
            state_dict,
        )
        update_registered_buffers(
            self.gaussian_conditional,
            "gaussian_conditional",
            ["_quantized_cdf", "_offset", "_cdf_length", "scale_table"],
            state_dict,
        )
        super().load_state_dict(state_dict)
Esempio n. 3
0
class ScaleHyperprior(CompressionModel):
    r"""Scale Hyperprior model from J. Balle, D. Minnen, S. Singh, S.J. Hwang,
    N. Johnston: `"Variational Image Compression with a Scale Hyperprior"
    <https://arxiv.org/abs/1802.01436>`_ Int. Conf. on Learning Representations
    (ICLR), 2018.

    Args:
        N (int): Number of channels
        M (int): Number of channels in the expansion layers (last layer of the
            encoder and last layer of the hyperprior decoder)
    """

    def __init__(self, N, M, **kwargs):
        super().__init__(entropy_bottleneck_channels=N, **kwargs)

        self.g_a = nn.Sequential(
            conv(3, N),
            GDN(N),
            conv(N, N),
            GDN(N),
            conv(N, N),
            GDN(N),
            conv(N, M),
        )

        self.g_s = nn.Sequential(
            deconv(M, N),
            GDN(N, inverse=True),
            deconv(N, N),
            GDN(N, inverse=True),
            deconv(N, N),
            GDN(N, inverse=True),
            deconv(N, 3),
        )

        self.h_a = nn.Sequential(
            conv(M, N, stride=1, kernel_size=3),
            nn.ReLU(inplace=True),
            conv(N, N),
            nn.ReLU(inplace=True),
            conv(N, N),
        )

        self.h_s = nn.Sequential(
            deconv(N, N),
            nn.ReLU(inplace=True),
            deconv(N, N),
            nn.ReLU(inplace=True),
            conv(N, M, stride=1, kernel_size=3),
            nn.ReLU(inplace=True),
        )

        self.gaussian_conditional = GaussianConditional(None)
        self.N = int(N)
        self.M = int(M)

    def forward(self, x):
        y = self.g_a(x)
        z = self.h_a(torch.abs(y))
        z_hat, z_likelihoods = self.entropy_bottleneck(z)
        scales_hat = self.h_s(z_hat)
        y_hat, y_likelihoods = self.gaussian_conditional(y, scales_hat)
        x_hat = self.g_s(y_hat)

        return {
            "x_hat": x_hat,
            "likelihoods": {"y": y_likelihoods, "z": z_likelihoods},
        }

    def load_state_dict(self, state_dict):
        # Dynamically update the entropy bottleneck buffers related to the CDFs
        update_registered_buffers(
            self.entropy_bottleneck,
            "entropy_bottleneck",
            ["_quantized_cdf", "_offset", "_cdf_length"],
            state_dict,
        )
        update_registered_buffers(
            self.gaussian_conditional,
            "gaussian_conditional",
            ["_quantized_cdf", "_offset", "_cdf_length", "scale_table"],
            state_dict,
        )
        super().load_state_dict(state_dict)

    @classmethod
    def from_state_dict(cls, state_dict):
        """Return a new model instance from `state_dict`."""
        N = state_dict["g_a.0.weight"].size(0)
        M = state_dict["g_a.6.weight"].size(0)
        net = cls(N, M)
        net.load_state_dict(state_dict)
        return net

    def update(self, scale_table=None, force=False):
        if scale_table is None:
            scale_table = get_scale_table()
        self.gaussian_conditional.update_scale_table(scale_table, force=force)
        super().update(force=force)

    def compress(self, x):
        y = self.g_a(x)
        z = self.h_a(torch.abs(y))

        z_strings = self.entropy_bottleneck.compress(z)
        z_hat = self.entropy_bottleneck.decompress(z_strings, z.size()[-2:])

        scales_hat = self.h_s(z_hat)
        indexes = self.gaussian_conditional.build_indexes(scales_hat)
        y_strings = self.gaussian_conditional.compress(y, indexes)
        return {"strings": [y_strings, z_strings], "shape": z.size()[-2:]}

    def decompress(self, strings, shape):
        assert isinstance(strings, list) and len(strings) == 2
        z_hat = self.entropy_bottleneck.decompress(strings[1], shape)
        scales_hat = self.h_s(z_hat)
        indexes = self.gaussian_conditional.build_indexes(scales_hat)
        y_hat = self.gaussian_conditional.decompress(strings[0], indexes)
        x_hat = self.g_s(y_hat).clamp_(0, 1)
        return {"x_hat": x_hat}
Esempio n. 4
0
class JointAutoregressiveHierarchicalPriors(CompressionModel):
    r"""Joint Autoregressive Hierarchical Priors model from D.
    Minnen, J. Balle, G.D. Toderici: `"Joint Autoregressive and Hierarchical
    Priors for Learned Image Compression" <https://arxiv.org/abs/1809.02736>`_,
    Adv. in Neural Information Processing Systems 31 (NeurIPS 2018).

    Args:
        N (int): Number of channels
        M (int): Number of channels in the expansion layers (last layer of the
            encoder and last layer of the hyperprior decoder)
    """
    def __init__(self, N=192, M=192, **kwargs):
        super().__init__(entropy_bottleneck_channels=N, **kwargs)

        self.g_a = nn.Sequential(
            conv(3, N, kernel_size=5, stride=2),
            GDN(N),
            conv(N, N, kernel_size=5, stride=2),
            GDN(N),
            conv(N, N, kernel_size=5, stride=2),
            GDN(N),
            conv(N, M, kernel_size=5, stride=2),
        )

        self.g_s = nn.Sequential(
            deconv(M, N, kernel_size=5, stride=2),
            GDN(N, inverse=True),
            deconv(N, N, kernel_size=5, stride=2),
            GDN(N, inverse=True),
            deconv(N, N, kernel_size=5, stride=2),
            GDN(N, inverse=True),
            deconv(N, 3, kernel_size=5, stride=2),
        )

        self.h_a = nn.Sequential(
            conv(M, N, stride=1, kernel_size=3),
            nn.LeakyReLU(inplace=True),
            conv(N, N, stride=2, kernel_size=5),
            nn.LeakyReLU(inplace=True),
            conv(N, N, stride=2, kernel_size=5),
        )

        self.h_s = nn.Sequential(
            deconv(N, M, stride=2, kernel_size=5),
            nn.LeakyReLU(inplace=True),
            deconv(M, M * 3 // 2, stride=2, kernel_size=5),
            nn.LeakyReLU(inplace=True),
            conv(M * 3 // 2, M * 2, stride=1, kernel_size=3),
        )

        self.entropy_parameters = nn.Sequential(
            nn.Conv2d(M * 12 // 3, M * 10 // 3, 1),
            nn.LeakyReLU(inplace=True),
            nn.Conv2d(M * 10 // 3, M * 8 // 3, 1),
            nn.LeakyReLU(inplace=True),
            nn.Conv2d(M * 8 // 3, M * 6 // 3, 1),
        )

        self.context_prediction = MaskedConv2d(M,
                                               2 * M,
                                               kernel_size=5,
                                               padding=2,
                                               stride=1)

        self.gaussian_conditional = GaussianConditional(None)
        self.N = int(N)
        self.M = int(M)

    def forward(self, x):
        y = self.g_a(x)
        z = self.h_a(y)
        z_hat, z_likelihoods = self.entropy_bottleneck(z)
        params = self.h_s(z_hat)

        y_hat = self.gaussian_conditional._quantize(  # pylint: disable=protected-access
            y, 'noise' if self.training else 'dequantize')
        ctx_params = self.context_prediction(y_hat)
        gaussian_params = self.entropy_parameters(
            torch.cat((params, ctx_params), dim=1))
        scales_hat, means_hat = gaussian_params.chunk(2, 1)
        _, y_likelihoods = self.gaussian_conditional(y,
                                                     scales_hat,
                                                     means=means_hat)
        x_hat = self.g_s(y_hat)

        return {
            'x_hat': x_hat,
            'likelihoods': {
                'y': y_likelihoods,
                'z': z_likelihoods
            },
        }

    @classmethod
    def from_state_dict(cls, state_dict):
        """Return a new model instance from `state_dict`."""
        N = state_dict['g_a.0.weight'].size(0)
        M = state_dict['g_a.6.weight'].size(0)
        net = cls(N, M)
        net.load_state_dict(state_dict)
        return net

    def compress(self, x):
        y = self.g_a(x)
        z = self.h_a(y)

        z_strings = self.entropy_bottleneck.compress(z)
        z_hat = self.entropy_bottleneck.decompress(z_strings, z.size()[-2:])

        params = self.h_s(z_hat)

        s = 4  # scaling factor between z and y
        kernel_size = 5  # context prediction kernel size
        padding = (kernel_size - 1) // 2

        y_height = z_hat.size(2) * s
        y_width = z_hat.size(3) * s

        y_hat = F.pad(y, (padding, padding, padding, padding))

        # yapf: enable
        # pylint: disable=protected-access
        cdf = self.gaussian_conditional._quantized_cdf.tolist()
        cdf_lengths = self.gaussian_conditional._cdf_length.reshape(
            -1).int().tolist()
        offsets = self.gaussian_conditional._offset.reshape(-1).int().tolist()
        # pylint: enable=protected-access

        y_strings = []
        for i in range(y.size(0)):
            encoder = BufferedRansEncoder()
            # Warning, this is slow...
            # TODO: profile the calls to the bindings...
            for h in range(y_height):
                for w in range(y_width):
                    y_crop = y_hat[i:i + 1, :, h:h + kernel_size,
                                   w:w + kernel_size]
                    ctx_params = self.context_prediction(y_crop)

                    # 1x1 conv for the entropy parameters prediction network, so
                    # we only keep the elements in the "center"
                    ctx_p = ctx_params[i:i + 1, :, padding:padding + 1,
                                       padding:padding + 1]
                    p = params[i:i + 1, :, h:h + 1, w:w + 1]
                    gaussian_params = self.entropy_parameters(
                        torch.cat((p, ctx_p), dim=1))
                    scales_hat, means_hat = gaussian_params.chunk(2, 1)

                    indexes = self.gaussian_conditional.build_indexes(
                        scales_hat)
                    y_q = torch.round(y_crop - means_hat)
                    y_hat[i, :, h + padding,
                          w + padding] = (y_q + means_hat)[i, :, padding,
                                                           padding]
                    encoder.encode_with_indexes(
                        y_q[i, :, padding, padding].int().tolist(),
                        indexes[i, :].squeeze().int().tolist(), cdf,
                        cdf_lengths, offsets)
            string = encoder.flush()
            y_strings.append(string)
        # yapf: disable

        return {'strings': [y_strings, z_strings], 'shape': z.size()[-2:]}

    def decompress(self, strings, shape):
        assert isinstance(strings, list) and len(strings) == 2
        # FIXME: we don't respect the default entropy coder and directly call the
        # range ANS decoder

        z_hat = self.entropy_bottleneck.decompress(strings[1], shape)
        params = self.h_s(z_hat)

        s = 4  # scaling factor between z and y
        kernel_size = 5  # context prediction kernel size
        padding = (kernel_size - 1) // 2

        y_height = z_hat.size(2) * s
        y_width = z_hat.size(3) * s

        # initialize y_hat to zeros, and pad it so we can directly work with
        # sub-tensors of size (N, C, kernel size, kernel_size)
        # yapf: disable
        y_hat = torch.zeros((z_hat.size(0), self.M, y_height + 2 * padding, y_width + 2 * padding),
                            device=z_hat.device)
        decoder = RansDecoder()

        # pylint: disable=protected-access
        cdf = self.gaussian_conditional._quantized_cdf.tolist()
        cdf_lengths = self.gaussian_conditional._cdf_length.reshape(-1).int().tolist()
        offsets = self.gaussian_conditional._offset.reshape(-1).int().tolist()

        # Warning: this is slow due to the auto-regressive nature of the
        # decoding... See more recent publication where they use an
        # auto-regressive module on chunks of channels for faster decoding...
        for i, y_string in enumerate(strings[0]):
            decoder.set_stream(y_string)

            for h in range(y_height):
                for w in range(y_width):
                    # only perform the 5x5 convolution on a cropped tensor
                    # centered in (h, w)
                    y_crop = y_hat[i:i + 1, :, h:h + kernel_size, w:w + kernel_size]
                    # ctx_params = self.context_prediction(torch.round(y_crop))
                    ctx_params = self.context_prediction(y_crop)

                    # 1x1 conv for the entropy parameters prediction network, so
                    # we only keep the elements in the "center"
                    ctx_p = ctx_params[i:i + 1, :, padding:padding + 1, padding:padding + 1]
                    p = params[i:i + 1, :, h:h + 1, w:w + 1]
                    gaussian_params = self.entropy_parameters(torch.cat((p, ctx_p), dim=1))
                    scales_hat, means_hat = gaussian_params.chunk(2, 1)

                    indexes = self.gaussian_conditional.build_indexes(scales_hat)

                    rv = decoder.decode_stream(
                        indexes[i, :].squeeze().int().tolist(),
                        cdf,
                        cdf_lengths,
                        offsets)
                    rv = torch.Tensor(rv).reshape(1, -1, 1, 1)

                    rv = self.gaussian_conditional._dequantize(rv, means_hat)

                    y_hat[i, :, h + padding:h + padding + 1, w + padding:w + padding + 1] = rv
        y_hat = y_hat[:, :, padding:-padding, padding:-padding]
        # pylint: enable=protected-access
        # yapf: enable

        x_hat = self.g_s(y_hat).clamp_(0, 1)
        return {'x_hat': x_hat}

    def update(self, scale_table=None, force=False):
        if scale_table is None:
            scale_table = get_scale_table()
        self.gaussian_conditional.update_scale_table(scale_table, force=force)
        super().update(force=force)

    def load_state_dict(self, state_dict):
        # Dynamically update the entropy bottleneck buffers related to the CDFs
        update_registered_buffers(self.entropy_bottleneck,
                                  'entropy_bottleneck',
                                  ['_quantized_cdf', '_offset', '_cdf_length'],
                                  state_dict)
        update_registered_buffers(
            self.gaussian_conditional, 'gaussian_conditional',
            ['_quantized_cdf', '_offset', '_cdf_length', 'scale_table'],
            state_dict)
        super().load_state_dict(state_dict)
Esempio n. 5
0
class ScaleHyperprior(CompressionModel):
    r"""Scale Hyperprior model from J. Balle, D. Minnen, S. Singh, S.J. Hwang,
    N. Johnston: `"Variational Image Compression with a Scale Hyperprior"
    <https://arxiv.org/abs/1802.01436>`_ Int. Conf. on Learning Representations
    (ICLR), 2018.

    Args:
        N (int): Number of channels
        M (int): Number of channels in the expansion layers (last layer of the
            encoder and last layer of the hyperprior decoder)
    """
    def __init__(self, N, M, **kwargs):
        super().__init__(entropy_bottleneck_channels=N, **kwargs)

        self.g_a = nn.Sequential(
            conv(3, N),
            GDN(N),
            conv(N, N),
            GDN(N),
            conv(N, N),
            GDN(N),
            conv(N, M),
        )

        self.g_s = nn.Sequential(
            deconv(M, N),
            GDN(N, inverse=True),
            deconv(N, N),
            GDN(N, inverse=True),
            deconv(N, N),
            GDN(N, inverse=True),
            deconv(N, 3),
        )

        self.h_a = nn.Sequential(
            conv(M, N, stride=1, kernel_size=3),
            nn.ReLU(inplace=True),
            conv(N, N),
            nn.ReLU(inplace=True),
            conv(N, N),
        )

        self.h_s = nn.Sequential(
            deconv(N, N),
            nn.ReLU(inplace=True),
            deconv(N, N),
            nn.ReLU(inplace=True),
            conv(N, M, stride=1, kernel_size=3),
            nn.ReLU(inplace=True),
        )

        self.gaussian_conditional = GaussianConditional(None)
        self.N = int(N)
        self.M = int(M)

    def forward(self, x):
        y = self.g_a(x)
        z = self.h_a(torch.abs(y))
        z_hat, z_likelihoods = self.entropy_bottleneck(z)  #量化+定义速率失真损失
        scales_hat = self.h_s(z_hat)
        y_hat, y_likelihoods = self.gaussian_conditional(
            y, scales_hat)  #编码导出y_hat时,依然需要解z_hat然后产出y_hat
        x_hat = self.g_s(y_hat)

        return {
            'x_hat': x_hat,
            'likelihoods': {
                'y': y_likelihoods,
                'z': z_likelihoods
            },
        }

    def load_state_dict(self, state_dict):
        # Dynamically update the entropy bottleneck buffers related to the CDFs
        update_registered_buffers(self.entropy_bottleneck,
                                  'entropy_bottleneck',
                                  ['_quantized_cdf', '_offset', '_cdf_length'],
                                  state_dict)
        update_registered_buffers(
            self.gaussian_conditional, 'gaussian_conditional',
            ['_quantized_cdf', '_offset', '_cdf_length', 'scale_table'],
            state_dict)
        super().load_state_dict(state_dict)

    @classmethod
    def from_state_dict(cls, state_dict):
        """Return a new model instance from `state_dict`."""
        N = state_dict['g_a.0.weight'].size(0)
        M = state_dict['g_a.6.weight'].size(0)
        net = cls(N, M)
        net.load_state_dict(state_dict)
        return net

    def update(self, scale_table=None, force=False):
        if scale_table is None:
            scale_table = get_scale_table()
        self.gaussian_conditional.update_scale_table(scale_table, force=force)
        super().update(force=force)

    #重点
    def compress(self, x):
        y = self.g_a(x)
        z = self.h_a(torch.abs(y))

        z_strings = self.entropy_bottleneck.compress(z)  #z直接量化+估计速率失真 ++ 熵编码
        z_hat = self.entropy_bottleneck.decompress(
            z_strings,
            z.size()[-2:])  #z解码后结果(压缩时仍需要)

        scales_hat = self.h_s(z_hat)  #z解码后通过h_s的结果(压缩时仍需要)
        indexes = self.gaussian_conditional.build_indexes(scales_hat)
        y_strings = self.gaussian_conditional.compress(
            y, indexes)  #y ++ 熵编码 其中indexes已被z_hat影响过
        return {'strings': [y_strings, z_strings], 'shape': z.size()[-2:]}

    def decompress(self, strings, shape):
        assert isinstance(strings, list) and len(strings) == 2
        z_hat = self.entropy_bottleneck.decompress(strings[1], shape)
        scales_hat = self.h_s(z_hat)
        indexes = self.gaussian_conditional.build_indexes(
            scales_hat)  #同压缩,获得indexes,其中indexes已被z_hat影响过
        y_hat = self.gaussian_conditional.decompress(
            strings[0], indexes)  #y ++ 熵解码 其中indexes已被z_hat影响过
        x_hat = self.g_s(y_hat).clamp_(0, 1)  #通过g_s网络,获得估计图像
        return {'x_hat': x_hat}