Esempio n. 1
0
    def test_mask_type():
        MaskedConv2d(1, 3, 3, mask_type="A")
        MaskedConv2d(1, 3, 3, mask_type="B")

        with pytest.raises(ValueError):
            MaskedConv2d(1, 3, 3, mask_type="C")
Esempio n. 2
0
    def test_masked_conv_A(self):
        conv = MaskedConv2d(3, 3, 3, padding=1)

        with pytest.raises(RuntimeError):
            m = torch.jit.script(conv)
Esempio n. 3
0
    def __init__(self,N=128,M=192,K=5,**kwargs): #'cuda:0' or 'cpu'
        super().__init__(entropy_bottleneck_channels=N, **kwargs)
        # super(DSIC, self).__init__()
        # self.entropy_bottleneck1 = CompressionModel(entropy_bottleneck_channels=N)
        # self.entropy_bottleneck2 = CompressionModel(entropy_bottleneck_channels=N)
        self.gaussian1 = GaussianMixtureConditional(K = K)
        self.gaussian2 = GaussianMixtureConditional(K = K)
        self.N = int(N)
        self.M = int(M)
        self.K = int(K)
        #定义组件
        self.encoder1 = Encoder1(N,M)
        self.encoder2 = Encoder2(N,M)
        self.decoder1 = Decoder1(N,M)
        self.decoder2 = Decoder2(N,M)
        # pic2 需要的组件


        # #hyper
        # self._h_a1 = encode_hyper(N=N,M=M)
        # self._h_a2 = encode_hyper(N=N,M=M)
        # self._h_s1 = gmm_hyper_y1(N=N,M=M,K=K)
        # self._h_s2 = gmm_hyper_y2(N=N,M=M,K=K)
######################################################################
        self.h_a1 = nn.Sequential(
            conv(M, N, stride=1, kernel_size=3),
            nn.LeakyReLU(inplace=True),
            conv(N, N, stride=2, kernel_size=5),
            nn.LeakyReLU(inplace=True),
            conv(N, N, stride=2, kernel_size=5),
        )

        self.h_s1 = nn.Sequential(
            deconv(N, M, stride=2, kernel_size=5),
            nn.LeakyReLU(inplace=True),
            deconv(M, M * 3 // 2, stride=2, kernel_size=5),
            nn.LeakyReLU(inplace=True),
            conv(M * 3 // 2, M * 2, stride=1, kernel_size=3),
        )

        self.entropy_parameters1 = nn.Sequential(
            nn.Conv2d(M * 12 // 3, M * 10 // 3, 1),
            nn.LeakyReLU(inplace=True),
            nn.Conv2d(M * 10 // 3, M * 8 // 3, 1),
            nn.LeakyReLU(inplace=True),
            nn.Conv2d(M * 8 // 3, M * 6 // 3, 1),
        )

        self.context_prediction1 = MaskedConv2d(M,
                                               2 * M,
                                               kernel_size=5,
                                               padding=2,
                                               stride=1)

        self.gaussian_conditional1 = GaussianConditional(None)

        self.h_a2 = nn.Sequential(
            conv(M, N, stride=1, kernel_size=3),
            nn.LeakyReLU(inplace=True),
            conv(N, N, stride=2, kernel_size=5),
            nn.LeakyReLU(inplace=True),
            conv(N, N, stride=2, kernel_size=5),
        )

        self.h_s2 = nn.Sequential(
            deconv(N, M, stride=2, kernel_size=5),
            nn.LeakyReLU(inplace=True),
            deconv(M, M * 3 // 2, stride=2, kernel_size=5),
            nn.LeakyReLU(inplace=True),
            conv(M * 3 // 2, M * 2, stride=1, kernel_size=3),
        )

        self.entropy_parameters2 = nn.Sequential(
            nn.Conv2d(M * 18 // 3, M * 10 // 3, 1), # (M * 12 // 3, M * 10 // 3, 1),
            nn.LeakyReLU(inplace=True),
            nn.Conv2d(M * 10 // 3, M * 8 // 3, 1),
            nn.LeakyReLU(inplace=True),
            nn.Conv2d(M * 8 // 3, M * 6 // 3, 1),
        )

        self.context_prediction2 = MaskedConv2d(M,
                                               2 * M,
                                               kernel_size=5,
                                               padding=2,
                                               stride=1)

        self.gaussian_conditional2 = GaussianConditional(None)
Esempio n. 4
0
    def test_mask_type():
        MaskedConv2d(1, 3, 3, mask_type='A')
        MaskedConv2d(1, 3, 3, mask_type='B')

        with pytest.raises(ValueError):
            MaskedConv2d(1, 3, 3, mask_type='C')
    def __init__(self, N=192, **kwargs):
        super().__init__(N=N, M=N, **kwargs)

        self.g_a = nn.Sequential(
            ResidualBlockWithStride(3, N, stride=2),
            ResidualBlock(N, N),
            ResidualBlockWithStride(N, N, stride=2),
            ResidualBlock(N, N),
            ResidualBlockWithStride(N, N, stride=2),
            ResidualBlock(N, N),
            conv3x3(N, N, stride=2),
        )
        self.g_a_b = copy.deepcopy(self.g_a)

        self.h_a = nn.Sequential(
            conv3x3(N, N),
            nn.LeakyReLU(inplace=True),
            conv3x3(N, N),
            nn.LeakyReLU(inplace=True),
            conv3x3(N, N, stride=2),
            nn.LeakyReLU(inplace=True),
            conv3x3(N, N),
            nn.LeakyReLU(inplace=True),
            conv3x3(N, N, stride=2),
        )
        self.h_a_b = copy.deepcopy(self.h_a)

        self.h_s = nn.Sequential(
            conv3x3(N, N),
            nn.LeakyReLU(inplace=True),
            subpel_conv3x3(N, N, 2),
            nn.LeakyReLU(inplace=True),
            conv3x3(N, N * 3 // 2),
            nn.LeakyReLU(inplace=True),
            subpel_conv3x3(N * 3 // 2, N * 3 // 2, 2),
            nn.LeakyReLU(inplace=True),
            conv3x3(N * 3 // 2, N * 2),
        )
        self.h_s_b = copy.deepcopy(self.h_s)

        self.g_s = nn.Sequential(
            ResidualBlock(N, N),
            ResidualBlockUpsample(N, N, 2),
            ResidualBlock(N, N),
            ResidualBlockUpsample(N, N, 2),
            ResidualBlock(N, N),
            ResidualBlockUpsample(N, N, 2),
            ResidualBlock(N, N),
            subpel_conv3x3(N, 3, 2),
        )
        self.g_s_b = copy.deepcopy(self.g_s)

        self.entropy_parameters = nn.Sequential(
            nn.Conv2d(N * 4, 640, 3, padding=1),
            nn.LeakyReLU(inplace=True),
            nn.Conv2d(640, 640, 3, padding=1),
            nn.LeakyReLU(inplace=True),
            nn.Conv2d(640, N * 9, 3, padding=1),
        )

        self.context_prediction = MaskedConv2d(N,
                                               2 * N,
                                               kernel_size=5,
                                               padding=2,
                                               stride=1)

        self.Quantization = Quantization()