def mutation(self):
        """
        Method that perform mutation on each offspring.
        """
        # initialize list of mutated individuals
        mutated_population = []
        # move the elite to next population
        for i in range(self.elite_size):
            mutated_population.append(self.population[i])
        # copy individuals to be mutated
        population_before_mutation = self.population.copy()[self.elite_size:]

        # use multiple processes to mutate individuals and compute fitness of mutated individuals
        with concurrent.futures.ProcessPoolExecutor(
                max_workers=CORES_NUMBER) as executor:
            # process individuals
            results = [
                executor.submit(_multiprocessing_mutation, individual)
                for individual in population_before_mutation
            ]

            for futures in concurrent.futures.as_completed(results):
                # store the result
                mutated_population.append(futures.result())

        # assign probabilities to be selected
        self._assign_probabilities(mutated_population)
    def crossover(self):
        """
        Method that perform crossover in population.
        Uses parents chosen by selection operator.
        """
        # initialize list of individuals moving to next population
        next_population = []
        # move the elite to next population
        for i in range(self.elite_size):
            next_population.append(self.population[i])

        # use multiple processes to combine genetic information and compute fitness of the offspring
        with concurrent.futures.ProcessPoolExecutor(
                max_workers=CORES_NUMBER) as executor:
            # process parents
            results = [
                executor.submit(_multiprocessing_crossover, parents,
                                self.mutations_number)
                for parents in self.parents
            ]

            for futures in concurrent.futures.as_completed(results):
                # store the result
                next_population.append(futures.result())

        # assign probabilities to be selected
        self._assign_probabilities(next_population)
    def __init__(self, population_size, elite_size, mutations_number,
                 use_palette):
        """
        Constructor for the class Population.
        Stochastically generates initial population.
        :param population_size: number of individuals in population.
        """
        # set population size
        self.population_size = population_size
        # set elite size
        self.elite_size = elite_size
        # set mutations number
        self.mutations_number = mutations_number
        # initialize list of individuals
        population = []
        # initialize total fitness
        total_fitness = 0

        # use multiple processes to create individuals and compute their fitness
        with concurrent.futures.ProcessPoolExecutor(
                max_workers=CORES_NUMBER) as executor:
            results = []
            # create progenitor
            individual = Individual(number_of_mutations=mutations_number,
                                    use_palette=use_palette)
            for i in range(self.population_size):
                # generate sibling
                sibling = Individual(use_palette=use_palette)
                # process sibling
                results.append(executor.submit(_multiprocessing_init, sibling))

            for futures in concurrent.futures.as_completed(results):
                # store the result
                population.append(futures.result())
        # sort the population by value of fitness
        population = sorted(population, key=itemgetter('fitness'))

        # aggregate the fitness of population elite
        for i in range(self.elite_size):
            total_fitness += population[i]['fitness']
        # auxiliary variable to scale the fitness value
        probability_scale = population[0]['fitness'] + population[
            self.elite_size - 1]['fitness']

        for i in range(self.population_size):
            # assign probability of being selected based on the fitness value of individual
            probability = (probability_scale - population[i]['fitness']
                           ) / total_fitness if i < self.elite_size else 0
            population[i]['probability'] = probability

        # save the population
        self.population = population
        # initialize parents list
        self.parents = []
Esempio n. 4
0
def get_results(u):
    try:
        #_uuid_ = uuid.UUID(u)
        _uuid_ = u
        [futures, pid] = pid_dict[_uuid_]
        jd = json.dumps({"job_id": str(_uuid_), "result": futures.result()})
        print(jd)
        return jd
    except KeyError:
        print('Key not found')
    except ValueError:
        print('UUID not found')
Esempio n. 5
0
 def processDir(self, inFolder, outFolder, isReverse=False):
     if isReverse:
         for root, dirs, fileList in os.walk(inFolder):
             for cfile in fileList:
                 with open(os.path.join(inFolder,cfile), 'rb') as handle:
                     for line in handle:
                         id = line[0:8]
                         ext = self.stripTrailingSpaces(line[8:13])
                         data = line[13:].rstrip("\n")
                         deData = self.decompress(data.decode('hex'))
                         self.mHandle = open(os.path.join(outFolder,id+ext),"w")
                         self.mHandle.write(deData.rstrip("\n"))
                         self.mHandle.close()
     else:
         index = 0
         self.mHandle = open(os.path.join(outFolder, self.addTrailing(str(index),"0")),"w")
         #self.mIDhandle = open("IDMap.txt","w")
         for root, dirs, fileList in os.walk(inFolder):
             with concurrent.futures.ThreadPoolExecutor(max_workers=100) as executer:
                 requests = {
                     executer.submit(self.processFile, os.path.join(root,cfile),
                     os.path.join(outFolder,cfile)) :
                     cfile for cfile in fileList
                 }
             
             for futures in concurrent.futures.as_completed(requests):
                 pFile = ""
                 try:
                     if self.mID != 10000000 and self.mID % self.mLimit == 0 :
                         index = index + 1
                         self.mHandle.close()
                         self.mHandle = open(os.path.join(outFolder,self.addTrailing(str(index),"0")),"w")
                         logging.info("Processed " + str(self.mID))
                     pFile, buffer = futures.result()
                     if buffer:
                         id = os.path.basename(pFile)
                         name, ext = os.path.splitext(id)
                         #self.mIDhandle.write(pFile + "\t" + str(self.mID) + "\n")
                         self.mHandle.write(str(self.mID))
                         self.mHandle.write(self.resize(ext))
                         self.mHandle.write(buffer)
                         self.mHandle.write("\n")
                         self.mID = self.mID + 1
                 except Exception as ex:
                     logging.error("Failed to write sequence: " + str(ex) + ":" + pFile)
     #self.mIDhandle.close()
     self.mHandle.close()
Esempio n. 6
0
def initiate_clients_consent(clients, host='127.0.0.1', port=4445):
    def _consent(client):
        resp = client['session'].get(
            f'http://{host}:{port}/oauth2/auth/requests/consent?consent_challenge={client["login_challenge"]}',
            allow_redirects=False)
        if resp.ok:
            return client
        return None

    consent_clients = []

    with concurrent.futures.ThreadPoolExecutor(max_workers=100) as executor:
        futures = (executor.submit(_consent, c) for c in clients)

        for futures in concurrent.futures.as_completed(futures):
            try:
                consent_clients.append(futures.result())
            except Exception as e:
                test_logger.error(e)
                pass
        return [x for x in consent_clients if x is not None]
Esempio n. 7
0
def getAlltheFrames(videoSource,videoName,filterToCheck,ssimIndex):
    #print("inside ","getAlltheFrames")
    frameCounter = 0
    success ,firstframe = videoSource.read()
    fps = videoSource.get(cv2.CAP_PROP_FPS)
    resizedframe = cv2.resize(firstframe,(640,360))
    executor = concurrent.futures.ThreadPoolExecutor(2000)
    totalFrame = videoSource.get(cv2.CAP_PROP_FRAME_COUNT)
    
    while(success):
        
        success ,frame = videoSource.read()
        frameName = "./output/"+str(videoName)+"_Frame_"+str(frameCounter)+".jpg"
        #pixMarkedName = "./output/"+str(videoName)+"_Frame_"+str(frameCounter)+".jpg"
        maskedName = "./difference/"+str(videoName)+"_Frame_"+str(frameCounter)+".jpg"
        if success:
            if toskiporNot(firstframe,frame,ssimIndex) or frameCounter == 0:
            
                print("Working on Frame number #",frameCounter+1,"Out of ", int(totalFrame))
                futures = executor.submit(countPixel,resizedframe,frameName,maskedName,filterToCheck)
                logging.debug("Thread No # "+ str(executor._counter()))
                logging.debug("Processed frame No #" + str(frameCounter+1) +" and Bad Pixels No # "+str(futures.result()))
                firstframe = frame
            frameCounter = frameCounter +1
            resizedframe = cv2.resize(frame,(640,360))
        else:
            break
        
    return frameCounter
Esempio n. 8
0
 def submit_result(self, funcs, *args, **kargs):
     futures = self.exe.submit(funcs, *args, **kargs)
     # Exe.Results.append( futures.result())
     return futures.result()
 def read(self, key):
     with concurrent.futures.ThreadPoolExecutor() as executor:
         futures = executor.submit(self.read_method, key)
         return futures.result()