def get_config(subject: Optional[str] = None,
               session: Optional[str] = None) -> BunchConst:
    cfg = BunchConst(
        process_er=config.process_er,
        runs=config.get_runs(subject=subject),
        use_maxwell_filter=config.use_maxwell_filter,
        proc=config.proc,
        task=config.get_task(),
        datatype=config.get_datatype(),
        acq=config.acq,
        rec=config.rec,
        space=config.space,
        bids_root=config.get_bids_root(),
        deriv_root=config.get_deriv_root(),
        l_freq=config.l_freq,
        h_freq=config.h_freq,
        l_trans_bandwidth=config.l_trans_bandwidth,
        h_trans_bandwidth=config.h_trans_bandwidth,
        resample_sfreq=config.resample_sfreq,
        crop_runs=config.crop_runs,
        interactive=config.interactive,
        rename_events=config.rename_events,
        eeg_bipolar_channels=config.eeg_bipolar_channels,
        eeg_template_montage=config.eeg_template_montage,
        fix_stim_artifact=config.fix_stim_artifact,
        stim_artifact_tmin=config.stim_artifact_tmin,
        stim_artifact_tmax=config.stim_artifact_tmax,
        find_flat_channels_meg=config.find_flat_channels_meg,
        find_noisy_channels_meg=config.find_noisy_channels_meg,
        reference_run=config.get_mf_reference_run(),
        drop_channels=config.drop_channels,
        find_breaks=config.find_breaks,
        min_break_duration=config.min_break_duration,
        t_break_annot_start_after_previous_event=config.
        t_break_annot_start_after_previous_event,  # noqa:E501
        t_break_annot_stop_before_next_event=config.
        t_break_annot_stop_before_next_event,  # noqa:E501
    )
    return cfg
def get_config(
    subject: Optional[str] = None,
    session: Optional[str] = None
) -> BunchConst:
    cfg = BunchConst(
        mf_cal_fname=config.get_mf_cal_fname(subject, session),
        mf_ctc_fname=config.get_mf_ctc_fname(subject, session),
        mf_st_duration=config.mf_st_duration,
        mf_head_origin=config.mf_head_origin,
        process_er=config.process_er,
        runs=config.get_runs(subject=subject),  # XXX needs to accept session!
        use_maxwell_filter=config.use_maxwell_filter,
        proc=config.proc,
        task=config.get_task(),
        datatype=config.get_datatype(),
        acq=config.acq,
        rec=config.rec,
        space=config.space,
        bids_root=config.get_bids_root(),
        deriv_root=config.get_deriv_root(),
        crop_runs=config.crop_runs,
        interactive=config.interactive,
        rename_events=config.rename_events,
        eeg_template_montage=config.eeg_template_montage,
        fix_stim_artifact=config.fix_stim_artifact,
        stim_artifact_tmin=config.stim_artifact_tmin,
        stim_artifact_tmax=config.stim_artifact_tmax,
        find_flat_channels_meg=config.find_flat_channels_meg,
        find_noisy_channels_meg=config.find_noisy_channels_meg,
        mf_reference_run=config.get_mf_reference_run(),
        drop_channels=config.drop_channels,
        find_breaks=config.find_breaks,
        min_break_duration=config.min_break_duration,
        t_break_annot_start_after_previous_event=config.t_break_annot_start_after_previous_event,  # noqa:E501
        t_break_annot_stop_before_next_event=config.t_break_annot_stop_before_next_event,  # noqa:E501
    )
    return cfg
Esempio n. 3
0
def run_maxwell_filter(subject, session=None):
    if config.proc and 'sss' in config.proc and config.use_maxwell_filter:
        raise ValueError(f'You cannot set use_maxwell_filter to True '
                         f'if data have already processed with Maxwell-filter.'
                         f' Got proc={config.proc}.')

    bids_path_in = BIDSPath(subject=subject,
                            session=session,
                            task=config.get_task(),
                            acquisition=config.acq,
                            processing=config.proc,
                            recording=config.rec,
                            space=config.space,
                            suffix=config.get_datatype(),
                            datatype=config.get_datatype(),
                            root=config.bids_root)
    bids_path_out = bids_path_in.copy().update(suffix='raw',
                                               root=config.deriv_root,
                                               check=False)

    # Load dev_head_t and digitization points from MaxFilter reference run.
    # Re-use in all runs and for processing empty-room recording.
    if config.use_maxwell_filter:
        reference_run = config.get_mf_reference_run()
        msg = f'Loading reference run: {reference_run}.'
        logger.info(
            gen_log_message(message=msg,
                            step=1,
                            subject=subject,
                            session=session))
        bids_path_in.update(run=reference_run)
        info = mne.io.read_info(bids_path_in.fpath)
        dev_head_t = info['dev_head_t']
        dig = info['dig']
        del reference_run, info

    for run_idx, run in enumerate(config.get_runs()):
        bids_path_in.update(run=run)
        bids_path_out.update(run=run)
        raw = load_data(bids_path_in)

        # Fix stimulation artifact
        if config.fix_stim_artifact:
            events, _ = mne.events_from_annotations(raw)
            raw = mne.preprocessing.fix_stim_artifact(
                raw,
                events=events,
                event_id=None,
                tmin=config.stim_artifact_tmin,
                tmax=config.stim_artifact_tmax,
                mode='linear')

        # Auto-detect bad channels.
        if config.find_flat_channels_meg or config.find_noisy_channels_meg:
            find_bad_channels(raw=raw,
                              subject=subject,
                              session=session,
                              task=config.get_task(),
                              run=run)

        # Maxwell-filter experimental data.
        if config.use_maxwell_filter:
            msg = 'Applying Maxwell filter to experimental data.'
            logger.info(
                gen_log_message(message=msg,
                                step=1,
                                subject=subject,
                                session=session))

            # Warn if no bad channels are set before Maxwell filter
            if not raw.info['bads']:
                msg = '\nFound no bad channels. \n '
                logger.warning(
                    gen_log_message(message=msg,
                                    subject=subject,
                                    step=1,
                                    session=session))

            if config.mf_st_duration:
                msg = '    st_duration=%d' % (config.mf_st_duration)
                logger.info(
                    gen_log_message(message=msg,
                                    step=1,
                                    subject=subject,
                                    session=session))

            # Keyword arguments shared between Maxwell filtering of the
            # experimental and the empty-room data.
            common_mf_kws = dict(calibration=get_mf_cal_fname(
                subject, session),
                                 cross_talk=get_mf_ctc_fname(subject, session),
                                 st_duration=config.mf_st_duration,
                                 origin=config.mf_head_origin,
                                 coord_frame='head',
                                 destination=dev_head_t)

            raw_sss = mne.preprocessing.maxwell_filter(raw, **common_mf_kws)
            raw_out = raw_sss
            raw_fname_out = (bids_path_out.copy().update(processing='sss',
                                                         extension='.fif'))
        elif config.ch_types == ['eeg']:
            msg = 'Not applying Maxwell filter to EEG data.'
            logger.info(
                gen_log_message(message=msg,
                                step=1,
                                subject=subject,
                                session=session))
            raw_out = raw
            raw_fname_out = bids_path_out.copy().update(extension='.fif')
        else:
            msg = ('Not applying Maxwell filter.\nIf you wish to apply it, '
                   'set use_maxwell_filter=True in your configuration.')
            logger.info(
                gen_log_message(message=msg,
                                step=1,
                                subject=subject,
                                session=session))
            raw_out = raw
            raw_fname_out = bids_path_out.copy().update(extension='.fif')

        # Save only the channel types we wish to analyze (including the
        # channels marked as "bad").
        # We do not run `raw_out.pick()` here because it uses too much memory.
        chs_to_include = config.get_channels_to_analyze(raw_out.info)
        raw_out.save(raw_fname_out,
                     picks=chs_to_include,
                     overwrite=True,
                     split_naming='bids')
        del raw_out
        if config.interactive:
            # Load the data we have just written, because it contains only
            # the relevant channels.
            raw = mne.io.read_raw_fif(raw_fname_out, allow_maxshield=True)
            raw.plot(n_channels=50, butterfly=True)

        # Empty-room processing.
        #
        # We pick the empty-room recording closest in time to the first run
        # of the experimental session.
        if run_idx == 0 and config.process_er:
            msg = 'Processing empty-room recording …'
            logger.info(
                gen_log_message(step=1,
                                subject=subject,
                                session=session,
                                message=msg))

            bids_path_er_in = bids_path_in.find_empty_room()
            raw_er = load_data(bids_path_er_in)
            raw_er.info['bads'] = [
                ch for ch in raw.info['bads'] if ch.startswith('MEG')
            ]

            # Maxwell-filter empty-room data.
            if config.use_maxwell_filter:
                msg = 'Applying Maxwell filter to empty-room recording'
                logger.info(
                    gen_log_message(message=msg,
                                    step=1,
                                    subject=subject,
                                    session=session))

                # We want to ensure we use the same coordinate frame origin in
                # empty-room and experimental data processing. To do this, we
                # inject the sensor locations and the head <> device transform
                # into the empty-room recording's info, and leave all other
                # parameters the same as for the experimental data. This is not
                # very clean, as we normally should not alter info manually,
                # except for info['bads']. Will need improvement upstream in
                # MNE-Python.
                raw_er.info['dig'] = dig
                raw_er.info['dev_head_t'] = dev_head_t
                raw_er_sss = mne.preprocessing.maxwell_filter(
                    raw_er, **common_mf_kws)

                # Perform a sanity check: empty-room rank should match the
                # experimental data rank after Maxwell filtering.
                rank_exp = mne.compute_rank(raw, rank='info')['meg']
                rank_er = mne.compute_rank(raw_er, rank='info')['meg']
                if not np.isclose(rank_exp, rank_er):
                    msg = (f'Experimental data rank {rank_exp:.1f} does not '
                           f'match empty-room data rank {rank_er:.1f} after '
                           f'Maxwell filtering. This indicates that the data '
                           f'were processed  differenlty.')
                    raise RuntimeError(msg)

                raw_er_out = raw_er_sss
                raw_er_fname_out = bids_path_out.copy().update(
                    processing='sss')
            else:
                raw_er_out = raw_er
                raw_er_fname_out = bids_path_out.copy()

            raw_er_fname_out = raw_er_fname_out.update(task='noise',
                                                       extension='.fif',
                                                       run=None)

            # Save only the channel types we wish to analyze
            # (same as for experimental data above).
            raw_er_out.save(raw_er_fname_out,
                            picks=chs_to_include,
                            overwrite=True,
                            split_naming='bids')
            del raw_er_out