Esempio n. 1
0
def run(args, myargs):
    my_config = getattr(myargs.config, args.command)
    config = AugmentConfig()
    for k, v in args.items():
        assert not hasattr(config, k)
        setattr(config, k, v)

    for k, v in my_config.items():
        if not hasattr(config, k):
            print('* config does not have %s'%k)
        setattr(config, k, v)
    device = torch.device("cuda")
    writer = myargs.writer
    writer.add_text('all_config', config.as_markdown(), 0)
    logger = myargs.logger
    config.print_params(logger.info_msg)

    config.genotype = gt.from_str(config.genotype)
    config.data_path = os.path.expanduser(config.data_path)
    config.plot_path = os.path.join(args.outdir, 'plot')
    config.path = args.outdir
    main(config=config, logger=logger, device=device,
         myargs=myargs)
Esempio n. 2
0
""" Training augmented model """
import torch.nn as nn
import torchvision
from tensorboardX import SummaryWriter
from config import AugmentConfig
import utils
from models.augment_cnn import AugmentCNN
from utils import *

config = AugmentConfig()

device = torch.device("cuda")

# tensorboard
writer = SummaryWriter(log_dir=os.path.join(config.path, "tb"))
writer.add_text('config', config.as_markdown(), 0)

logger = utils.get_logger(
    os.path.join(config.path, "{}.log".format(config.name)))
config.print_params(logger.info)


def main():
    logger.info("Logger is set - training start")
    logger.info("Torch version is: {}".format(torch.__version__))
    logger.info("Torch_vision version is: {}".format(torchvision.__version__))

    # set default gpu device id
    torch.cuda.set_device(config.gpus[0])

    # set seed
Esempio n. 3
0
import os
import torch
import torch.nn as nn
import numpy as np
from tensorboardX import SummaryWriter
from config import AugmentConfig
import utils
from models.augment_cnn import AugmentCNN, AugmentCNNImageNet

config = AugmentConfig()

device = torch.device("cuda")

# tensorboard
writer = SummaryWriter(log_dir=os.path.join(config.path, "tb"))
writer.add_text("config", config.as_markdown(), 0)

logger = utils.get_logger(
    os.path.join(config.path, "{}.log".format(config.name)))
config.print_params(logger.info)


def main():
    logger.info("Logger is set - training start")

    # set default gpu device id
    torch.cuda.set_device(config.gpus[0])

    # set seed
    np.random.seed(config.seed)
    torch.manual_seed(config.seed)