Esempio n. 1
0
def post_train_detector_job(dataset_name,
                            run_name,
                            epochs,
                            import_datasets=""):
    dataset_name = quote(dataset_name)
    run_name = quote(run_name)
    rc = RunConfig(dataset_name, run_name)
    dc = DatasetConfig(dataset_name)
    if rc.exists and dc.exists:
        cmd = [
            python_path, "training_script.py",
            "--name={}".format(dataset_name),
            "--experiment={}".format(run_name),
            "--input_shape={}".format(rc.get('detector_resolution')),
            "--train_data_dir=fjlfbwjefrlbwelrfb_man_we_need_a_better_detector_codebase",
            "--batch_size={}".format(rc.get('detection_training_batch_size')),
            "--image_shape={}".format(dc.get('video_resolution')),
            "--epochs={}".format(epochs)
        ]

        if import_datasets:
            import_datasets = quote(import_datasets)
            cmd.append("--import_datasets={}".format(import_datasets))

        job_id = jm.run(cmd, "train_detector")
        if job_id:
            return (job_id, 202)
        else:
            return (NoContent, 503)
    else:
        return (NoContent, 404)
Esempio n. 2
0
def post_detect_objects_job(dataset_name, run_name):
    dataset_name = quote(dataset_name)
    run_name = quote(run_name)
    rc = RunConfig(dataset_name, run_name)
    if rc.exists:
        cmd = [python_path, "detect_csv.py",
               "--dataset={}".format(dataset_name),
               "--run={}".format(run_name),
               "--res={}".format(rc.get("detector_resolution")),
               "--conf={}".format(rc.get("confidence_threshold")),
               "--bs={}".format(rc.get("detection_batch_size"))]

        job_id = jm.run(cmd, "detect_objects")
        if job_id:
            return (job_id, 202)
        else:
            return (NoContent, 503)
    else:
        return (NoContent, 404)
Esempio n. 3
0
def post_visualize_detections_job(dataset_name, run_name, confidence_threshold, coords):
    dataset_name = quote(dataset_name)
    run_name = quote(run_name)
    rc = RunConfig(dataset_name, run_name)
    dc = DatasetConfig(dataset_name)
    if rc.exists and dc.exists:
        cmd = [python_path, "visualize_detections.py",
               "--cmd=findvids",
               "--dataset={}".format(dataset_name),
               "--run={}".format(run_name),
               "--res={}".format(rc.get("detector_resolution")),
               "--conf={}".format(confidence_threshold),
               "--fps={}".format(dc.get('video_fps')),
               "--coords={}".format(coords)]

        job_id = jm.run(cmd, "visualize_detections")
        if job_id:
            return (job_id, 202)
        else:
            return (NoContent, 503)
    else:
        return (NoContent, 404)
Esempio n. 4
0
def post_detections_to_world_coordinates_job(dataset_name, run_name,
                                             make_videos):
    dataset_name = quote(dataset_name)
    run_name = quote(run_name)
    rc = RunConfig(dataset_name, run_name)
    dc = DatasetConfig(dataset_name)
    if rc.exists and dc.exists:
        cmd = [
            python_path, "detections_world.py", "--cmd=findvids",
            "--dataset={}".format(dataset_name), "--run={}".format(run_name),
            "--make_videos={}".format(make_videos),
            "--ssdres={}".format(rc.get("detector_resolution")),
            "--vidres={}".format(dc.get('video_resolution')),
            "--kltres={}".format(dc.get('point_track_resolution'))
        ]

        job_id = jm.run(cmd, "detections_to_world")
        if job_id:
            return (job_id, 202)
        else:
            return (NoContent, 503)
    else:
        return (NoContent, 404)
Esempio n. 5
0
def main(dataset, run, n_clips, clip_length):
    dc = DatasetConfig(dataset)
    rc = RunConfig(dataset, run)
    mask = Masker(dataset)
    classes = get_classnames(dataset)
    num_classes = len(classes) + 1
    calib = Calibration(dataset)

    dataset_path = "{dsp}{ds}/".format(dsp=datasets_path, ds=dataset)
    run_path = "{rp}{ds}_{r}/".format(rp=runs_path, ds=dataset, r=run)

    # Grab a bunch of videos
    vids_query = "{dsp}videos/*.mkv".format(dsp=dataset_path)
    all_vids = glob(vids_query)
    all_vids = [right_remove(x.split('/')[-1], '.mkv') for x in all_vids]

    all_vids.sort()

    vids = []

    if n_clips > len(all_vids):
        n_clips = len(all_vids)

    if n_clips == len(all_vids):
        vids = all_vids
    else:
        while len(vids) < n_clips:
            vid = choice(all_vids)
            if not vid in vids:
                vids.append(vid)

    print_flush(vids)

    # Find out what has been run on all of these videos, what to include
    include_klt = True
    include_pixeldets = True
    include_worlddets = True
    include_worldtracks = True

    klts = []
    pixeldets = []
    worlddets = []
    worldtracks = []

    # Point tracks need to be converted for faster access
    vidres = dc.get('video_resolution')
    kltres = dc.get('point_track_resolution')

    class KLTConfig(object):
        klt_x_factor = 0
        klt_y_factor = 0

    klt_config = KLTConfig()
    klt_config.klt_x_factor = vidres[0] / kltres[0]
    klt_config.klt_y_factor = vidres[1] / kltres[1]

    ssdres = rc.get('detector_resolution')
    x_scale = vidres[0] / ssdres[0]
    y_scale = vidres[1] / ssdres[1]

    colors = class_colors(num_classes)

    for vid in vids:
        f = get_klt_path(dataset_path, vid)
        if not isfile(f):
            include_klt = False
        else:
            klt = load(f)
            klt, klt_frames = convert_klt(klt, klt_config)
            pts = (klt, klt_frames, class_colors(n_cols_klts))
            klts.append(pts)

        f = get_pixeldet_path(run_path, vid)
        if not isfile(f):
            include_pixeldets = False
        else:
            dets = pd.read_csv(f)

            pixeldets.append((dets, colors, x_scale, y_scale))

        f = get_worlddet_path(run_path, vid)
        if not isfile(f):
            include_worlddets = False
        else:
            dets = pd.read_csv(f)

            worlddets.append((dets, colors, calib))

        f = get_worldtracks_path(run_path, vid)
        if not isfile(f):
            include_worldtracks = False
        else:
            tracks = load(f)
            worldtracks.append((tracks, class_colors(n_cols_tracks), calib))

    print_flush("Point tracks: {}".format(include_klt))
    print_flush("Pixel coordinate detections: {}".format(include_pixeldets))
    print_flush("World coordinate detections: {}".format(include_worlddets))
    print_flush("World coordinate tracks: {}".format(include_worldtracks))

    # Decide where to start and stop in the videos
    clip_length = clip_length * dc.get(
        'video_fps')  # convert from seconds to frames

    print_flush("Clip length in frames: {}".format(clip_length))

    clips = []
    for vid in vids:
        start, stop = make_clip(vid, clip_length, dataset_path)
        clips.append((start, stop))

    incs = [
        include_klt, include_pixeldets, include_worlddets, include_worldtracks
    ]
    funs = [klt_frame, pixeldet_frame, worlddet_frame, worldtracks_frame]
    dats = [klts, pixeldets, worlddets, worldtracks]
    nams = [
        "Point tracks", "Detections in pixel coordinates",
        "Detections in world coordinates", "Tracks in world coordinates"
    ]

    print_flush(clips)

    with iio.get_writer("{trp}summary.mp4".format(trp=run_path),
                        fps=dc.get('video_fps')) as outvid:
        for i_vid, vid in enumerate(vids):
            print_flush(vid)
            old_prog = 0

            with iio.get_reader("{dsp}videos/{v}.mkv".format(dsp=dataset_path,
                                                             v=vid)) as invid:
                start, stop = clips[i_vid]
                for i_frame in range(start, stop):
                    frame = invid.get_data(i_frame)

                    pieces = []

                    for inc, fun, dat, nam in zip(incs, funs, dats, nams):
                        if inc:
                            piece = fun(dat[i_vid],
                                        mask.mask(frame.copy(), alpha=0.5),
                                        i_frame)
                            draw_text(piece, vid, i_frame, nam)
                            pieces.append(piece)

                    outvid.append_data(join(pieces))

                    prog = float(i_frame - start) / (stop - start)
                    if prog - old_prog > 0.1:
                        print_flush("{}%".format(round(prog * 100)))
                        old_prog = prog

    print_flush("Done!")