def create_samples(self): print "total samples:",len(sample_names) for index in range(len(sample_names)): sample_name = sample_names[index] sample = Sample(sample_name, sample_colors[index]) file_name = input_dir+sample_name+"_combined.root" yields_dic = self.read_hist(file_name) print "Sample:", sample_name+";", if "data" in sample_name: sample.setData() self.data_sample = sample for region in regions: nevts, nerror = yields_dic[region] sample.buildHisto([nevts], region, "cuts", 0.5) print region,str(round(nevts,3))+";", print continue sample.setNormByTheory() for region in regions: nevts, nerror = yields_dic[region] nevts *= weight nerror *= weight if "Dijets" in sample_name and "SR" in region: if self.cut == 10: nevts = 4.07 nerror = math.sqrt(nevts) if self.cut == 14: nevts = 2.42 nerror = math.sqrt(nevts) sample.buildHisto([nevts], region, "cuts", 0.5) sample.buildStatErrors([nerror], region, "cuts") print region,str(round(nevts,3))+";", print #sample.setStatConfig(True) sample.setFileList([in_file_path]) ## add systematic?? sample.addSystematic(Systematic(sample_name+"_stats",\ configMgr.weights, 1.2, 0.8, "user", "userOverallSys")) #for systematic in self.sys_common: #sample.addSystematic(systematic) self.set_norm_factor(sample)
# Give the analysis a name configMgr.analysisName = "MyUserAnalysis" configMgr.outputFileName = "results/%s_Output.root"%configMgr.analysisName # Define cuts configMgr.cutsDict["UserRegion"] = "1." # Define weights configMgr.weights = "1." # Define samples bkgSample = Sample("Bkg",kGreen-9) bkgSample.setStatConfig(True) bkgSample.buildHisto([nbkg],"UserRegion","cuts",0.5) bkgSample.buildStatErrors([nbkgErr],"UserRegion","cuts") bkgSample.addSystematic(corb) bkgSample.addSystematic(ucb) sigSample = Sample("Sig",kPink) sigSample.setNormFactor("mu_Sig",1.,0.,100.) sigSample.setStatConfig(True) sigSample.setNormByTheory() sigSample.buildHisto([nsig],"UserRegion","cuts",0.5) sigSample.buildStatErrors([nsigErr],"UserRegion","cuts") sigSample.addSystematic(cors) sigSample.addSystematic(ucs) dataSample = Sample("Data",kBlack) dataSample.setData() dataSample.buildHisto([ndata],"UserRegion","cuts",0.5)
def common_setting(mass): from configManager import configMgr from ROOT import kBlack, kGray, kRed, kPink, kViolet, kBlue, kAzure, kGreen, \ kOrange from configWriter import Sample from systematic import Systematic import os color_dict = { "Zbb": kAzure, "Zbc": kAzure, "Zbl": kAzure, "Zcc": kAzure, "Zcl": kBlue, "Zl": kBlue, "Wbb": kGreen, "Wbc": kGreen, "Wbl": kGreen, "Wcc": kGreen, "Wcl": kGreen, "Wl": kGreen, "ttbar": kOrange, "stop": kOrange, "stopWt": kOrange, "ZZPw": kGray, "WZPw": kGray, "WWPw": kGray, "fakes": kPink, "Zjets": kAzure, "Wjets": kGreen, "top": kOrange, "diboson": kGray, "$Z\\tau\\tau$+HF": kAzure, "$Z\\tau\\tau$+LF": kBlue, "$W$+jets": kGreen, "$Zee$": kViolet, "Zhf": kAzure, "Zlf": kBlue, "Zee": kViolet, "others": kViolet, signal_prefix + "1000": kRed, signal_prefix + "1100": kRed, signal_prefix + "1200": kRed, signal_prefix + "1400": kRed, signal_prefix + "1600": kRed, signal_prefix + "1800": kRed, signal_prefix + "2000": kRed, signal_prefix + "2500": kRed, signal_prefix + "3000": kRed, # Add your new processes here "VH": kGray + 2, "VHtautau": kGray + 2, "ttH": kGray + 2, } ########################## # Setting the parameters of the hypothesis test configMgr.doExclusion = True # True=exclusion, False=discovery configMgr.nTOYs = 10000 # default=5000 configMgr.calculatorType = 0 # 2=asymptotic calculator, 0=frequentist calculator configMgr.testStatType = 3 # 3=one-sided profile likelihood test statistic (LHC default) configMgr.nPoints = 30 # number of values scanned of signal-strength for upper-limit determination of signal strength. configMgr.writeXML = False configMgr.seed = 40 configMgr.toySeedSet = True configMgr.toySeed = 400 # Pruning # - any overallSys systematic uncertainty if the difference of between the up variation and the nominal and between # the down variation and the nominal is below a certain (user) given threshold # - for histoSys types, the situation is more complex: # - a first check is done if the integral of the up histogram - the integral of the nominal histogram is smaller # than the integral of the nominal histogram and the same for the down histogram # - then a second check is done if the shape of the up, down and nominal histograms is very similar Only when both # conditions are fulfilled the systematics will be removed. # default is False, so the pruning is normally not enabled configMgr.prun = True # The threshold to decide if an uncertainty is small or not is set by configMgr.prunThreshold = 0.005 # where the number gives the fraction of deviation with respect to the nominal histogram below which an uncertainty # is considered to be small. The default is currently set to 0.01, corresponding to 1 % (This might be very aggressive # for the one or the other analyses!) configMgr.prunThreshold = 0.005 # method 1: a chi2 test (this is still a bit experimental, so watch out if this is working or not) # method 2: checking for every bin of the histograms that the difference between up variation and nominal and down (default) configMgr.prunMethod = 2 # variation and nominal is below a certain threshold. # Smoothing: HistFitter does not provide any smoothing tools. # More Details: https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/HistFitterAdvancedTutorial#Pruning_in_HistFitter ########################## # Keep SRs also in background fit confuguration configMgr.keepSignalRegionType = True configMgr.blindSR = BLIND # Give the analysis a name configMgr.analysisName = "bbtautau" + "X" + mass configMgr.histCacheFile = "data/" + configMgr.analysisName + ".root" configMgr.outputFileName = "results/" + configMgr.analysisName + "_Output.root" # Define cuts configMgr.cutsDict["SR"] = "1." # Define weights configMgr.weights = "1." # Define samples list_samples = [] yields_mass = yields[mass] for process, yields_process in yields_mass.items(): if process == 'data' or signal_prefix in process: continue # print("-> {} / Colour: {}".format(process, color_dict[process])) bkg = Sample(str(process), color_dict[process]) bkg.setStatConfig(stat_config) # OLD: add lumi uncertainty (bkg/sig correlated, not for data-driven fakes) # NOW: add lumi by hand bkg.setNormByTheory(False) noms = yields_process["nEvents"] errors = yields_process["nEventsErr"] if use_mcstat else [0.0] # print(" nEvents (StatError): {} ({})".format(noms, errors)) bkg.buildHisto(noms, "SR", my_disc, 0.5) bkg.buildStatErrors(errors, "SR", my_disc) if not stat_only and not no_syst: if process == 'fakes': key_here = "ATLAS_FF_1BTAG_SIDEBAND_Syst_hadhad" if not impact_check_continue(dict_syst_check, key_here): bkg.addSystematic( Systematic(key_here, configMgr.weights, 1.50, 0.50, "user", syst_type)) else: key_here = "ATLAS_Lumi_Run2_hadhad" if not impact_check_continue(dict_syst_check, key_here): bkg.addSystematic( Systematic(key_here, configMgr.weights, 1.017, 0.983, "user", syst_type)) for key, values in yields_process.items(): if 'ATLAS' not in key: continue if impact_check_continue(dict_syst_check, key): continue # this should not be applied on the Sherpa if process == 'Zhf' and key == 'ATLAS_DiTauSF_ZMODEL_hadhad': continue if process == 'Zlf' and key == 'ATLAS_DiTauSF_ZMODEL_hadhad': continue ups = values[0] downs = values[1] systUpRatio = [ u / n if n != 0. else float(1.) for u, n in zip(ups, noms) ] systDoRatio = [ d / n if n != 0. else float(1.) for d, n in zip(downs, noms) ] bkg.addSystematic( Systematic(str(key), configMgr.weights, systUpRatio, systDoRatio, "user", syst_type)) list_samples.append(bkg) # FIXME: This is unusual! top = Sample('top', kOrange) top.setStatConfig(False) # No stat error top.setNormByTheory(False) # consider lumi for it top.buildHisto([0.00001], "SR", my_disc, 0.5) # small enough # HistFitter can accept such large up ratio # Systematic(name, weight, ratio_up, ratio_down, syst_type, syst_fistfactory_type) if not stat_only and not no_syst: key_here = 'ATLAS_TTBAR_YIELD_UPPER_hadhad' if not impact_check_continue(dict_syst_check, key_here): top.addSystematic( Systematic(key_here, configMgr.weights, unc_ttbar[mass], 0.9, "user", syst_type)) list_samples.append(top) sigSample = Sample("Sig", kRed) sigSample.setNormFactor("mu_Sig", 1., 0., 100.) #sigSample.setStatConfig(stat_config) sigSample.setStatConfig(False) sigSample.setNormByTheory(False) noms = yields_mass[signal_prefix + mass]["nEvents"] errors = yields_mass[signal_prefix + mass]["nEventsErr"] if use_mcstat else [0.0] sigSample.buildHisto([n * MY_SIGNAL_NORM * 1e-3 for n in noms], "SR", my_disc, 0.5) #sigSample.buildStatErrors(errors, "SR", my_disc) for key, values in yields_mass[signal_prefix + mass].items(): if 'ATLAS' not in key: continue if impact_check_continue(dict_syst_check, key): continue ups = values[0] downs = values[1] systUpRatio = [ u / n if n != 0. else float(1.) for u, n in zip(ups, noms) ] systDoRatio = [ d / n if n != 0. else float(1.) for d, n in zip(downs, noms) ] if not stat_only and not no_syst: sigSample.addSystematic( Systematic(str(key), configMgr.weights, systUpRatio, systDoRatio, "user", syst_type)) if not stat_only and not no_syst: key_here = "ATLAS_SigAccUnc_hadhad" if not impact_check_continue(dict_syst_check, key_here): sigSample.addSystematic( Systematic(key_here, configMgr.weights, [1 + unc_sig_acc[mass] for i in range(my_nbins)], [1 - unc_sig_acc[mass] for i in range(my_nbins)], "user", syst_type)) key_here = "ATLAS_Lumi_Run2_hadhad" if not impact_check_continue(dict_syst_check, key_here): sigSample.addSystematic( Systematic(key_here, configMgr.weights, 1.017, 0.983, "user", syst_type)) list_samples.append(sigSample) # Set observed and expected number of events in counting experiment n_SPlusB = yields_mass[signal_prefix + mass]["nEvents"][0] + sum_of_bkg(yields_mass)[0] n_BOnly = sum_of_bkg(yields_mass)[0] if BLIND: # configMgr.useAsimovSet = True # Use the Asimov dataset # configMgr.generateAsimovDataForObserved = True # Generate Asimov data as obsData for UL # configMgr.useSignalInBlindedData = False ndata = sum_of_bkg(yields_mass) else: try: ndata = yields_mass["data"]["nEvents"] except: ndata = [0. for _ in range(my_nbins)] lumiError = 0.017 # Relative luminosity uncertainty dataSample = Sample("Data", kBlack) dataSample.setData() dataSample.buildHisto(ndata, "SR", my_disc, 0.5) list_samples.append(dataSample) # Define top-level ana = configMgr.addFitConfig("SPlusB") ana.addSamples(list_samples) ana.setSignalSample(sigSample) # Define measurement meas = ana.addMeasurement(name="NormalMeasurement", lumi=1.0, lumiErr=lumiError / 100000.) # make it very small so that pruned # we use the one added by hand meas.addPOI("mu_Sig") #meas.statErrorType = "Poisson" # Fix the luminosity in HistFactory to constant meas.addParamSetting("Lumi", True, 1) # Add the channel chan = ana.addChannel(my_disc, ["SR"], my_nbins, my_xmin, my_xmax) chan.blind = BLIND #chan.statErrorType = "Poisson" ana.addSignalChannels([chan]) # These lines are needed for the user analysis to run # Make sure file is re-made when executing HistFactory if configMgr.executeHistFactory: if os.path.isfile("data/%s.root" % configMgr.analysisName): os.remove("data/%s.root" % configMgr.analysisName)
# Give the analysis a name configMgr.analysisName = "MyUserAnalysis" configMgr.outputFileName = "results/%s_Output.root" % configMgr.analysisName # Define cuts configMgr.cutsDict["UserRegion"] = "1." # Define weights configMgr.weights = "1." # Define samples bkgSample = Sample("Bkg", kGreen - 9) bkgSample.setStatConfig(True) bkgSample.buildHisto([nbkg], "UserRegion", "cuts", 0.5) bkgSample.buildStatErrors([nbkgErr], "UserRegion", "cuts") bkgSample.addSystematic(corb) bkgSample.addSystematic(ucb) sigSample = Sample("Sig", kPink) sigSample.setNormFactor("mu_Sig", 1., 0., 100.) sigSample.setStatConfig(True) sigSample.setNormByTheory() sigSample.buildHisto([nsig], "UserRegion", "cuts", 0.5) sigSample.buildStatErrors([nsigErr], "UserRegion", "cuts") sigSample.addSystematic(cors) sigSample.addSystematic(ucs) dataSample = Sample("Data", kBlack) dataSample.setData() dataSample.buildHisto([ndata], "UserRegion", "cuts", 0.5)
gammajets.setStatConfig(True) gammajets.setNormByTheory(False) #gammajets.addSystematic(qcdElNorm) #gammajets.setQCD() data = Sample("data",kBlack) data.setData() commonSamples = [ttbargamma, Wgamma, Wjets, ttbarDilep, singletop, Zgamma, Zjets, diboson, gammajets, data] for lepton in ['El']: #for region in ("WCRlHT","WCRhHT", "HMEThHT","HMETmeff", "HMThHT","HMTmeff", "SRS", "SRW"): for region in ("WCRlHT","WCRhHT", "HMEThHT", "HMThHT", "SRW"): ttbargamma.buildHisto([backyields.GetYield(lepton, region, "ttbargamma")], region+lepton, "cuts") ttbargamma.buildStatErrors([backyields.GetYieldUnc(lepton, region, "ttbargamma")], region+lepton, "cuts") Wgamma.buildHisto([backyields.GetYield(lepton, region, "Wgamma")], region+lepton, "cuts") Wgamma.buildStatErrors([backyields.GetYieldUnc(lepton, region, "Wgamma")], region+lepton, "cuts") Wjets.buildHisto([backyields.GetYield(lepton, region, "Wjets")], region+lepton, "cuts") Wjets.buildStatErrors([backyields.GetYieldUnc(lepton, region, "Wjets")], region+lepton, "cuts") ttbarDilep.buildHisto([backyields.GetYield(lepton, region, "ttbarDilep")], region+lepton, "cuts") ttbarDilep.buildStatErrors([backyields.GetYieldUnc(lepton, region, "ttbarDilep")], region+lepton, "cuts") singletop.buildHisto([backyields.GetYield(lepton, region, "singletop")], region+lepton, "cuts") singletop.buildStatErrors([backyields.GetYieldUnc(lepton, region, "singletop")], region+lepton, "cuts") Zgamma.buildHisto([backyields.GetYield(lepton, region, "Zgamma")], region+lepton, "cuts") Zgamma.buildStatErrors([backyields.GetYieldUnc(lepton, region, "Zgamma")], region+lepton, "cuts") Zjets.buildHisto([backyields.GetYield(lepton, region, "Zjets")], region+lepton, "cuts") Zjets.buildStatErrors([backyields.GetYieldUnc(lepton, region, "Zjets")], region+lepton, "cuts") diboson.buildHisto([backyields.GetYield(lepton, region, "diboson")], region+lepton, "cuts") diboson.buildStatErrors([backyields.GetYieldUnc(lepton, region, "diboson")], region+lepton, "cuts") gammajets.buildHisto([backyields.GetYield(lepton, region, "gammajets")], region+lepton, "cuts")
singletop.addSystematic(singletopNorm) gammajets = Sample("gammajets",28) # brown gammajets.setStatConfig(True) gammajets.addSystematic(qcdElNorm) #gammajets.setQCD() data = Sample("data",kBlack) data.setData() commonSamples = [ttbargamma, Wgamma, Wjets, ttbarDilep, singletop, Zgamma, Zjets, diboson, gammajets, data] for lepton in ('El', 'Mu'): for region in ("WCRlHT","WCRhHT", "HMEThHT","HMETmeff", "HMThHT","HMTmeff", "SRS", "SRW"): ttbargamma.buildHisto([Tables.GetYield(lepton, region, "ttbargamma")], region+lepton, "cuts") ttbargamma.buildStatErrors([Tables.GetYieldUnc(lepton, region, "ttbargamma")], region+lepton, "cuts") Wgamma.buildHisto([Tables.GetYield(lepton, region, "Wgamma")], region+lepton, "cuts") Wgamma.buildStatErrors([Tables.GetYieldUnc(lepton, region, "Wgamma")], region+lepton, "cuts") Wjets.buildHisto([Tables.GetYield(lepton, region, "Wjets")], region+lepton, "cuts") Wjets.buildStatErrors([Tables.GetYieldUnc(lepton, region, "Wjets")], region+lepton, "cuts") ttbarDilep.buildHisto([Tables.GetYield(lepton, region, "ttbarDilep")], region+lepton, "cuts") ttbarDilep.buildStatErrors([Tables.GetYieldUnc(lepton, region, "ttbarDilep")], region+lepton, "cuts") singletop.buildHisto([Tables.GetYield(lepton, region, "singletop")], region+lepton, "cuts") singletop.buildStatErrors([Tables.GetYieldUnc(lepton, region, "singletop")], region+lepton, "cuts") Zgamma.buildHisto([Tables.GetYield(lepton, region, "Zgamma")], region+lepton, "cuts") Zgamma.buildStatErrors([Tables.GetYieldUnc(lepton, region, "Zgamma")], region+lepton, "cuts") Zjets.buildHisto([Tables.GetYield(lepton, region, "Zjets")], region+lepton, "cuts") Zjets.buildStatErrors([Tables.GetYieldUnc(lepton, region, "Zjets")], region+lepton, "cuts") diboson.buildHisto([Tables.GetYield(lepton, region, "diboson")], region+lepton, "cuts") diboson.buildStatErrors([Tables.GetYieldUnc(lepton, region, "diboson")], region+lepton, "cuts") gammajets.buildHisto([Tables.GetYield(lepton, region, "gammajets")], region+lepton, "cuts")