Esempio n. 1
0
def reload_config():
    global settings
    settings = configurations.get_config()

    global match_info
    match_info = configurations.get_config(section="MATCH")

    global store
    store = configurations.get_config(section="STORE")
Esempio n. 2
0
                       source_sample_matrix,
                       source_char_aux,
                       source_word_mask,
                       samples=samples,
                       config=config,
                       model=search_model,
                       data_stream=test_stream,
                       normalize=config['normalized_bleu']))

    # Initialize main loop
    logger.info("Initializing main loop")
    main_loop = MainLoop(model=training_model,
                         algorithm=None,
                         data_stream=None,
                         extensions=extensions)

    for extension in main_loop.extensions:
        extension.main_loop = main_loop
    main_loop._run_extensions('before_training')


logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)

if __name__ == '__main__':
    # Get configurations for model
    configuration = configurations.get_config()
    logger.info("Model options:\n{}".format(pprint.pformat(configuration)))
    # Get data streams and call main
    main(configuration, get_test_stream(**configuration))
Esempio n. 3
0
# Get the arguments
parser = argparse.ArgumentParser()
parser.add_argument("exp_config",
                    help="Path to the yaml config file for your experiment")
parser.add_argument(
    "-m",
    "--mode",
    default='train',
    help="The mode we are in [train,predict,server] -- default=train")
parser.add_argument("--bokeh",
                    default=False,
                    action="store_true",
                    help="Use bokeh server for plotting")

# WORKING: move this to a separate method so we can call different modes from different threads
if __name__ == "__main__":
    # Get configurations for model
    args = parser.parse_args()
    arg_dict = vars(args)
    configuration_file = arg_dict['exp_config']
    mode = arg_dict['mode']
    bokeh = args.bokeh
    logger.info('Running Neural Machine Translation in mode: {}'.format(mode))
    config_obj = configurations.get_config(configuration_file)
    # add the config file name into config_obj
    config_obj['config_file'] = configuration_file
    logger.info("Model Configuration:\n{}".format(pprint.pformat(config_obj)))

    run(mode=mode, config_obj=config_obj, bokeh=bokeh)
Esempio n. 4
0
import praw
import time
import requests
import configurations
import Stats
import traceback
import ScheduleManager as schedule
from datetime import datetime, timedelta, timezone
from PostTemplate import match_no_info
from MatchData import Match
from SimpleMatchData import SimpleMatch

reddit = praw.Reddit('bot1')
settings = configurations.get_config()
match_info = configurations.get_config(section="MATCH")
store = configurations.get_config(section="STORE")

match = None
attempt_count = 10


def start_up():
    print("Iniciando Placar Futebot Mini...")

    global match
    if store["simplified_data"] == "True":
        match = SimpleMatch(match_info)
    else:
        match = Match(settings)

    while True: