Esempio n. 1
0
def test_lm_cv_grid():
    cv = ml.get_default_cv("linear_model", "cl", search_type="grid")
    cv.param_grid = {
        "ml__penalty": ["l1"],
        "ml__C": [1e-5, 1e-3, 1e-1]
    }
    _test_basic_flow_holdout_pandas1(cv, True)
    _test_basic_flow_holdout_pandas2(cv, True)
    _test_basic_flow_cv_pandas(cv, True)
Esempio n. 2
0
def test_xgboost_cv_grid():
    cv = ml.get_default_cv("xgboost", "rg", search_type="grid")
    cv.param_grid = dict(
        ml__colsample_bynode=[0.1],
        ml__learning_rate=[0.01],
        ml__ratio_min_child_weight=[None, 0.005, 0.01]
    )
    _test_basic_flow_holdout_pandas1(cv, False)
    _test_basic_flow_holdout_pandas2(cv, False)
    _test_basic_flow_cv_pandas(cv, False)
Esempio n. 3
0
def test_random_holdout(setup):
    df_training, df_validation, df_test, feature_columns = setup
    is_cl = False
    target_column = utils.get_target_column(is_cl)
    cv_obj = ml.get_default_cv("linear_model", "rg", "r2")
    model = cv_obj.fit_holdout_pandas(df_training,
                                      target_column,
                                      feature_columns,
                                      df_validation=df_validation)
    analyzer = ml.CVAnalyzer(model.estimator)
    _basic_flow(analyzer)
Esempio n. 4
0
def test_random_forest_cv_grid():
    cv = ml.get_default_cv("random_forest", "cl", search_type="grid")
    cv.param_grid = dict(
        ml__max_depth=[2],
        ml__n_estimators=[100],
        ml__max_features=["auto"],
        ml__min_samples_leaf=[0.01, 0.05, 0.1]
    )
    _test_basic_flow_holdout_pandas1(cv, True)
    _test_basic_flow_holdout_pandas2(cv, True)
    _test_basic_flow_cv_pandas(cv, True)
Esempio n. 5
0
def test_lightgbm_cv_grid():
    cv = ml.get_default_cv("lightgbm", "cl", search_type="grid")
    cv.param_grid = {
        "ml__num_leaves": [10],
        "ml__colsample_bytree": [0.1],
        "ml__learning_rate": [0.01],
        "ml__min_child_samples": [0, 20, 100]
    }
    _test_basic_flow_holdout_pandas1(cv, True)
    _test_basic_flow_holdout_pandas2(cv, True)
    _test_basic_flow_cv_pandas(cv, True)
Esempio n. 6
0
def test_grid_holdout(setup):
    df_training, df_validation, df_test, feature_columns = setup
    is_cl = True
    target_column = utils.get_target_column(is_cl)
    cv_obj = ml.get_default_cv("linear_model", "cl", search_type="grid")
    cv_obj.parameter_grid = {
        "ml__penalty": ["l1", "l2"],
        "ml__C": [1e-5, 1e-3, 1e-1]
    }
    model = cv_obj.fit_holdout_pandas(df_training,
                                      target_column,
                                      feature_columns,
                                      ratio_training=0.8)
    analyzer = ml.CVAnalyzer(model.estimator)
    _basic_flow(analyzer)
Esempio n. 7
0
def test_random_forest_cv_random():
    cv = ml.get_default_cv("random_forest", "rg", search_type="random")
    cv.n_iter = 5
    _test_basic_flow_holdout_pandas1(cv, False)
    _test_basic_flow_holdout_pandas2(cv, False)
    _test_basic_flow_cv_pandas(cv, False)
Esempio n. 8
0
def test_xgboost_cv_random():
    cv = ml.get_default_cv("xgboost", "cl", search_type="random")
    cv.n_iter = 5
    _test_basic_flow_holdout_pandas1(cv, True)
    _test_basic_flow_holdout_pandas2(cv, True)
    _test_basic_flow_cv_pandas(cv, True)
Esempio n. 9
0
def test_lm_cv_random():
    cv = ml.get_default_cv("linear_model", "cl", search_type="random")
    cv.n_iter = 2
    _test_basic_flow_holdout_pandas1(cv, True)
    _test_basic_flow_holdout_pandas2(cv, True)
    _test_basic_flow_cv_pandas(cv, True)