Esempio n. 1
0
def compare(zid,user_name,verbose=True):

    their_answer = consensus.one_answer(zid,user_name)
    expert_answer = consensus.checksum(zid)

    nt = len(their_answer)
    nx = len(expert_answer)

    if nt == nx:
        match_temp = True
        for tk in their_answer.iterkeys():
            if expert_answer.has_key(tk):
                match_temp = True and expert_answer.has_key(tk)

        if verbose:
            if match_temp:
                print "%s's answer for %s (%i sources) matches that of the experts." % (user_name,zid,nt)
            else:
                print "%s's answer for %s (%i sources) does not match that of the experts." % (user_name,zid,nt)

        match_expert = match_temp
    else:
        if verbose:
            print "%s's number of sources for %s does not match (%i vs %i)" % (user_name,zid,nt,nx)
        match_expert = False

    return match_expert
Esempio n. 2
0
def compare(zid, user_name, verbose=True):

    their_answer = consensus.one_answer(zid, user_name)
    expert_answer = consensus.checksum(zid)

    nt = len(their_answer)
    nx = len(expert_answer)

    if nt == nx:
        match_temp = True
        for tk in their_answer.iterkeys():
            if expert_answer.has_key(tk):
                match_temp = True and expert_answer.has_key(tk)

        if verbose:
            if match_temp:
                print "%s's answer for %s (%i sources) matches that of the experts." % (
                    user_name, zid, nt)
            else:
                print "%s's answer for %s (%i sources) does not match that of the experts." % (
                    user_name, zid, nt)

        match_expert = match_temp
    else:
        if verbose:
            print "%s's number of sources for %s does not match (%i vs %i)" % (
                user_name, zid, nt, nx)
        match_expert = False

    return match_expert
Esempio n. 3
0
def mps_bending_angle(consensus_level = 0.50):

    # Compute the bending and position angles for double-peaked, single-contour sources with optical counterparts

    tstart = time.time()
    
    # Load data
    df = pd.read_csv('%s/bending_angles/multipeaked_singles_cc.csv' % rgz_dir,delimiter=',')

    df2 = df[(df['ntotal'] == 2)]

    with open('%s/bending_angles/angles_multipeaked_singles.csv' % rgz_dir,'w') as f:

        print >> f,'zooniverse_id,bending_angle,position_angle'

        # get optical counterpart for zooniverse_id (loop over eventually)

        df2_pair1 = df2[::2]
        df2_pair2 = df2[1::2]
        _zid = np.array(df2_pair1['zooniverse_id'])
        _x1 = np.array(df2_pair1['xc'])
        _y1 = np.array(df2_pair1['yc'])
        _x2 = np.array(df2_pair2['xc'])
        _y2 = np.array(df2_pair2['yc'])

        for zooniverse_id,x1,y1,x2,y2 in zip(_zid,_x1,_y1,_x2,_y2):

            c = consensus.checksum(zooniverse_id)
            try:
                if (len(c['answer']) == 1) and (c['n_users']/float(c['n_total']) >= consensus_level):
                    if c['answer'][c['answer'].keys()[0]].has_key('ir_peak'):
                        peak_x,peak_y = c['answer'][c['answer'].keys()[0]]['ir_peak']

                        ir_x = peak_x * first_ir_scale_x
                        ir_y = peak_y * first_ir_scale_y
                        alpha = bending_angle(ir_x,ir_y,x1,y1,x2,y2)
                        alpha_deg = alpha * 180./np.pi
                        phi = position_angle(ir_x,ir_y,x1,y1,x2,y2)
                        phi_deg = phi * 180./np.pi

                        print >> f,'{0:s},{1:.4f},{2:.4f}'.format(zooniverse_id,alpha_deg,phi_deg)

                else:
                    print "Had more than 1 IR sources and/or less than {0:.2f} percent consensus for {1:s}".format(consensus_level,zooniverse_id)
            except TypeError:
                print "No 'answer' key for %s" % zooniverse_id

    # Timing the process
    tend = time.time()

    n = len(df2)/2
    print '%.2f minutes for %i subjects' % ((tend - tstart)/60.,n)
    print '%.2f subjects per second' % (n/(tend - tstart))


    return None
Esempio n. 4
0
def plot_gs_volunteers():

    # Plot the results of the gold standard classifications by the users, removing the expert classifications

    gs_gals = get_galaxies()
    for gal in gs_gals:
        print gal
        c0 = consensus.checksum(gal,experts_only=False,excluded=experts)
        consensus.plot_consensus(c0,savefig = True)

    return None
Esempio n. 5
0
def plot_gs_volunteers():

    # Plot the results of the gold standard classifications by the users, removing the expert classifications

    gs_gals = get_galaxies()
    for gal in gs_gals:
        print gal
        c0 = consensus.checksum(gal, experts_only=False, excluded=experts)
        consensus.plot_consensus(c0, savefig=True)

    return None
def compare(zid, user_name, verbose=True, exclude_user=False):

    # Compare the classification of a single galaxy by a single user to that of the expert science team

    their_answer = consensus.one_answer(zid, user_name)
    if exclude_user:
        expert_answer = consensus.checksum(zid,
                                           experts_only=True,
                                           excluded=user_name)
    else:
        expert_answer = consensus.checksum(zid, experts_only=True)

    # Total number of galaxies identified in each answer
    nt = len(their_answer['answer'])
    nx = len(expert_answer['answer'])

    suff_x = '' if nx == 1 else 's'
    suff_t = '' if nt == 1 else 's'

    if nt == nx:
        match_temp = True
        for tk in their_answer['answer'].iterkeys():
            match_temp = True and expert_answer['answer'].has_key(tk)

        if verbose:
            if match_temp:
                print "Yes - %s's answer for %s (%i source%s) matches that of the experts." % (
                    user_name, zid, nt, suff_t)
            else:
                print "No  - %s's answer for %s has the same number of source%s (%i) as the experts, but not the same arrangement." % (
                    user_name, zid, suff_t, nt)

        match_expert = match_temp
    else:
        if verbose:
            print "No  - %s had %i source%s in %s, compared to %i source%s by the experts" % (
                user_name, nt, suff_t, zid, nx, suff_x)
        match_expert = False

    return match_expert
Esempio n. 7
0
import consensus

zids = ("hymor01_ARG0003o4o", "hymor01_ARG0003o4w", "hymor01_ARG0003o4t",
        "hymor02_ARG0003hkm", "hymor02_ARG0003hlo", "hymor02_ARG0003hk3",
        "hymor03_ARG0000gng", "hymor04_ARG0003czn", "hymor04_ARG0003cyx",
        "hymor04_ARG0003cyr", "hymor04_ARG0003cyc", "hymor05_ARG0001arg",
        "hymor05_ARG0001ark", "hymor05_ARG0001arv", "hymor05_ARG0001aqn",
        "hymor06_ARG00021rf", "hymor07_ARG00024bn", "hymor07_ARG00024d2",
        "hymor07_ARG0002495", "hymor07_ARG000248y", "hymor08_ARG0003j0n",
        "hymor08_ARG0003j0a", "hymor08_ARG0003j0z", "hymor08_ARG0003j1d",
        "hymor09_ARG00027o7", "hymor09_ARG00027p0", "hymor09_ARG00027mr",
        "hymor10_ARG0003ph9", "hymor10_ARG0003pgv", "hymor10_ARG0003pgw",
        "hymor10_ARG0003pht", "hymor11_ARG0002p17", "hymor11_ARG0002p1h",
        "hymor11_ARG0002p1x", "hymor11_ARG0002ozg", "hymor11_ARG0002oza"
        "hymor12_ARG00007vb", "hymor12_ARG00007us", "hymor12_ARG00007uw",
        "hymor12_ARG00007up", "hymor12_ARG00007vp", "hymor13_ARG0001hz4",
        "hymor13_ARG0001hyx", "hymor13_ARG0001hzl", "hymor13_ARG0001hys")

for zid in zids:
    c = consensus.checksum(zid.split('_')[1])
    if c != None:
        consensus.plot_consensus(c, savefig=zid)
    else:
        print "Couldn't do %s" % zid
Esempio n. 8
0
import consensus

zids=("hymor01_ARG0003o4o", "hymor01_ARG0003o4w", "hymor01_ARG0003o4t", "hymor02_ARG0003hkm", "hymor02_ARG0003hlo", "hymor02_ARG0003hk3", "hymor03_ARG0000gng", "hymor04_ARG0003czn", "hymor04_ARG0003cyx", "hymor04_ARG0003cyr", "hymor04_ARG0003cyc", "hymor05_ARG0001arg", "hymor05_ARG0001ark", "hymor05_ARG0001arv", "hymor05_ARG0001aqn", "hymor06_ARG00021rf", "hymor07_ARG00024bn", "hymor07_ARG00024d2", "hymor07_ARG0002495", "hymor07_ARG000248y", "hymor08_ARG0003j0n", "hymor08_ARG0003j0a", "hymor08_ARG0003j0z", "hymor08_ARG0003j1d", "hymor09_ARG00027o7", "hymor09_ARG00027p0", "hymor09_ARG00027mr", "hymor10_ARG0003ph9", "hymor10_ARG0003pgv", "hymor10_ARG0003pgw", "hymor10_ARG0003pht", "hymor11_ARG0002p17", "hymor11_ARG0002p1h", "hymor11_ARG0002p1x", "hymor11_ARG0002ozg", "hymor11_ARG0002oza" "hymor12_ARG00007vb", "hymor12_ARG00007us", "hymor12_ARG00007uw", "hymor12_ARG00007up", "hymor12_ARG00007vp", "hymor13_ARG0001hz4", "hymor13_ARG0001hyx", "hymor13_ARG0001hzl", "hymor13_ARG0001hys")

for zid in zids:
    c = consensus.checksum(zid.split('_')[1])
    if c != None:
        consensus.plot_consensus(c,savefig=zid)
    else:
        print "Couldn't do %s" % zid
    
Esempio n. 9
0
def plot_one_triple(zooniverse_id,pathdict,figno=1,savefig=False,anglepath=''):

    # Make a four-panel plot of the consensus identification with marked bending angle and position angle for a triple source

    cons = consensus.checksum(zooniverse_id)

    subject = subjects.find_one({'zooniverse_id':zooniverse_id})
    contours = get_contours(subject,pathdict)
    radio_components = contours['contours']

    # Plot image
    
    answer = cons['answer']

    # Download contour data
    
    sf_x = 500./contours['width']
    sf_y = 500./contours['height']
    
    verts_all = []
    codes_all = []
    components = contours['contours']

    for comp in components:
    
        # Order of bounding box components is (xmax,ymax,xmin,ymin)
        comp_xmax,comp_ymax,comp_xmin,comp_ymin = comp[0]['bbox']
        
        # Only plot radio components identified by the users as the consensus;
        # check on the xmax value to make sure
        for v in answer.itervalues():
            if comp_xmax in v['xmax']:
    
                for idx,level in enumerate(comp):
                    verts = [((p['x'])*sf_x,(p['y']-1)*sf_y) for p in level['arr']]
                    
                    codes = np.ones(len(verts),int) * Path.LINETO
                    codes[0] = Path.MOVETO
                
                    verts_all.extend(verts)
                    codes_all.extend(codes)
    
    try:
        path = Path(verts_all, codes_all)
        patch_black = patches.PathPatch(path, facecolor = 'none', edgecolor='black', lw=1)
    except AssertionError:
        print 'Users found no components for consensus match of %s' % zooniverse_id
    
    # Plot the infrared results
    
    fig = plt.figure(figno,(15,4))
    fig.clf()
    ax3 = fig.add_subplot(143)
    ax4 = fig.add_subplot(144)
    
    colormaparr = [cm.hot_r,cm.Blues,cm.RdPu,cm.Greens,cm.PuBu,cm.YlGn,cm.Greys][::-1]
    colorarr = ['r','b','m','g','c','y','k'][::-1]
    
    if len(answer) > 0: # At least one galaxy was identified
        for idx,ans in enumerate(answer.itervalues()):

            if ans.has_key('peak_data'):

                # Plot the KDE map
                colormap = colormaparr.pop()
                ax3.imshow(np.rot90(ans['peak_data']['Z']), cmap=colormap,extent=[xmin, xmax, ymin, ymax])
        
                # Plot individual sources
                color = colorarr.pop()
                x_plot,y_plot = ans['ir_x'],ans['ir_y']
                ax3.scatter(x_plot, y_plot, c=color, marker='o', s=10, alpha=1./len(x_plot))

                ax4.plot([ans['ir_peak'][0]],[ans['ir_peak'][1]],color=color,marker='*',markersize=12)
    
            elif ans.has_key('ir'):
                color = colorarr.pop()
                x_plot,y_plot = ans['ir']
                ax3.plot([x_plot],[y_plot],color=color,marker='o',markersize=2)
                ax4.plot([x_plot],[y_plot],color=color,marker='*',markersize=12)

            else:
                ax4.text(550,idx*25,'#%i - no IR host' % idx,fontsize=11)

    
    ax3.set_xlim([0, 500])
    ax3.set_ylim([500, 0])
    ax3.set_title(zooniverse_id)
    ax3.set_aspect('equal')
    
    ax4.set_xlim([0, 500])
    ax4.set_ylim([500, 0])
    ax4.set_title('Consensus (%i/%i users)' % (cons['n_users'],cons['n_total']))
    
    ax4.set_aspect('equal')
    
    # Display IR and radio images
    
    url_standard = subject['location']['standard']
    im_standard = Image.open(cStringIO.StringIO(urllib.urlopen(url_standard).read()))
    ax1 = fig.add_subplot(141)
    ax1.imshow(im_standard,origin='upper')
    ax1.set_title('WISE')

    url_radio = subject['location']['radio']
    im_radio = Image.open(cStringIO.StringIO(urllib.urlopen(url_radio).read()))
    ax2 = fig.add_subplot(142)
    ax2.imshow(im_radio,origin='upper')
    ax2.set_title(subject['metadata']['source'])
    ax2.get_yaxis().set_ticklabels([])

    ax3.get_yaxis().set_ticklabels([])

    # Plot contours identified as the consensus
    if len(answer) > 0:
        ax4.add_patch(patch_black)
        # Add centers of bounding boxes
        for comp in components:
            bbox_radio = comp[0]['bbox']
            bbox_ir = bbox_radio_to_ir(bbox_radio)
            xrad = np.median((bbox_ir[0],bbox_ir[2]))
            yrad = np.median((bbox_ir[1],bbox_ir[3]))
            ax4.scatter(xrad,yrad, c='g', marker='s', s=15, alpha=1)

            dbx = [bbox_ir[i] for i in (2,2,0,0,2)]
            dby = [bbox_ir[i] for i in (3,1,1,3,3)]
            ax4.plot(dbx,dby,color='g')

        radiobeamsize = 5. # arcsec
        imagesize = 3. # arcmin
        imagescale = IMG_HEIGHT_NEW/imagesize / 60. # pixel / arcsec
        radio_tol = radiobeamsize * imagescale

        for ans in answer:
            if answer[ans].has_key('ir_peak'):
                # Optical counterpart position
                xc,yc = answer[ans]['ir_peak']     

                # Measure all positions in radio pixel coordinates
                radio_centroids = pix_radio(components)
    
                maxdist = 0
                for centroid in radio_centroids:
                    d = pix_dist(xc,yc,centroid[0],centroid[1])
                    maxdist = d if d > maxdist else maxdist
                    if d <= radio_tol:
                        middle_radio = centroid
                        radio_centroids.remove(middle_radio)
    
                        x1 = radio_centroids[0][0]
                        y1 = radio_centroids[0][1]
                        x2 = radio_centroids[1][0]
                        y2 = radio_centroids[1][1]

                if len(radio_centroids) == 2:

                    m1 = (y1 - yc) / (x1 - xc)
                    b1 = yc - m1*xc
                    m2 = (y2 - yc) / (x2 - xc)
                    b2 = yc - m2*xc

                    xedge1 = 0 if x1 < xc else 500
                    yedge1 = y1 - (x1-xedge1)*(yc-y1)/(xc-x1)

                    xedge2 = 0 if x2 < xc else 500
                    yedge2 = y2 - (x2-xedge2)*(yc-y2)/(xc-x2)

                    # Draw and annotate the the bending angle

                    ax4.plot([xedge1,xc],[yedge1,yc],color='orange',linestyle='--')
                    ax4.plot([xedge2,xc],[yedge2,yc],color='orange',linestyle='--')
                    alpha_deg = bending_angle(xc,yc,x1,y1,x2,y2) * 180/np.pi
                    ax4.text(550,0,r'$\alpha$ = %.1f deg' % alpha_deg,fontsize=11)

                else:
                    print "\tDidn't find match to optical ID for triple radio source %s" % zooniverse_id

            else:
                print "\tNo IR peak for %s" % zooniverse_id

    ax4.yaxis.tick_right()
    
    ax1.get_xaxis().set_ticks([0,100,200,300,400])
    ax2.get_xaxis().set_ticks([0,100,200,300,400])
    ax3.get_xaxis().set_ticks([0,100,200,300,400])
    ax4.get_xaxis().set_ticks([0,100,200,300,400,500])

    plt.subplots_adjust(wspace=0.02)
    
    # Save hard copy of the figure
    if savefig:
        fig.savefig('{0:}/bending_angles/plots/individual/triples/{1:}ba_{2:}.pdf'.format(rgz_dir,anglepath,zooniverse_id))
        plt.close()
    else:
        plt.show()

    # Close figure after it's done; otherwise mpl complains about having thousands of stuff open
    
    return None
Esempio n. 10
0
def plot_one_double(zooniverse_id,pathdict,figno=1,savefig=False,anglepath='',dbltype='radio'):

    # Make a four-panel plot of the consensus identification with marked bending angle and position angle for a double source

    cons = consensus.checksum(zooniverse_id)

    subject = subjects.find_one({'zooniverse_id':zooniverse_id})
    contours = get_contours(subject,pathdict)
    radio_components = contours['contours']

    # Plot image
    
    answer = cons['answer']

    # Download contour data
    
    sf_x = 500./contours['width']
    sf_y = 500./contours['height']
    
    verts_all = []
    codes_all = []
    components = contours['contours']

    for comp in components:
    
        # Order of bounding box components is (xmax,ymax,xmin,ymin)
        comp_xmax,comp_ymax,comp_xmin,comp_ymin = comp[0]['bbox']
        
        # Only plot radio components identified by the users as the consensus;
        # check on the xmax value to make sure
        for v in answer.itervalues():
            if comp_xmax in v['xmax']:
    
                for idx,level in enumerate(comp):
                    verts = [((p['x'])*sf_x,(p['y']-1)*sf_y) for p in level['arr']]
                    
                    codes = np.ones(len(verts),int) * Path.LINETO
                    codes[0] = Path.MOVETO
                
                    verts_all.extend(verts)
                    codes_all.extend(codes)
    
    try:
        path = Path(verts_all, codes_all)
        patch_black = patches.PathPatch(path, facecolor = 'none', edgecolor='black', lw=1)
    except AssertionError:
        print 'Users found no components for consensus match of %s' % zooniverse_id
    
    # Plot the infrared results
    
    fig = plt.figure(figno,(15,4))
    fig.clf()
    ax3 = fig.add_subplot(143)
    ax4 = fig.add_subplot(144)
    
    colormaparr = [cm.hot_r,cm.Blues,cm.RdPu,cm.Greens,cm.PuBu,cm.YlGn,cm.Greys][::-1]
    colorarr = ['r','b','m','g','c','y','k'][::-1]
    
    if len(answer) > 0: # At least one galaxy was identified
        for idx,ans in enumerate(answer.itervalues()):

            if ans.has_key('peak_data'):

                # Plot the KDE map
                colormap = colormaparr.pop()
                ax3.imshow(np.rot90(ans['peak_data']['Z']), cmap=colormap,extent=[xmin, xmax, ymin, ymax])
        
                # Plot individual sources
                color = colorarr.pop()
                '''
                x_plot = [xt * 500./424 for xt in ans['ir_x'] if xt != -99.0]
                y_plot = [yt * 500./424 for yt in ans['ir_y'] if yt != -99.0]
                '''
                x_plot,y_plot = ans['ir_x'],ans['ir_y']
                ax3.scatter(x_plot, y_plot, c=color, marker='o', s=10, alpha=1./len(x_plot))

                ax4.plot([ans['ir_peak'][0]],[ans['ir_peak'][1]],color=color,marker='*',markersize=12)
    
            elif ans.has_key('ir'):
                color = colorarr.pop()
                x_plot,y_plot = ans['ir']
                ax3.plot([x_plot],[y_plot],color=color,marker='o',markersize=2)
                ax4.plot([x_plot],[y_plot],color=color,marker='*',markersize=12)
            else:
                ax4.text(550,idx*25,'#%i - no IR host' % idx,fontsize=11)

    
    ax3.set_xlim([0, 500])
    ax3.set_ylim([500, 0])
    ax3.set_title(zooniverse_id)
    ax3.set_aspect('equal')
    
    ax4.set_xlim([0, 500])
    ax4.set_ylim([500, 0])
    ax4.set_title('Consensus (%i/%i users)' % (cons['n_users'],cons['n_total']))
    
    ax4.set_aspect('equal')
    
    # Display IR and radio images
    
    url_standard = subject['location']['standard']
    im_standard = Image.open(cStringIO.StringIO(urllib.urlopen(url_standard).read()))
    ax1 = fig.add_subplot(141)
    ax1.imshow(im_standard,origin='upper')
    ax1.set_title('WISE')

    url_radio = subject['location']['radio']
    im_radio = Image.open(cStringIO.StringIO(urllib.urlopen(url_radio).read()))
    ax2 = fig.add_subplot(142)
    ax2.imshow(im_radio,origin='upper')
    ax2.set_title(subject['metadata']['source'])
    ax2.get_yaxis().set_ticklabels([])

    ax3.get_yaxis().set_ticklabels([])

    # Plot contours identified as the consensus
    if len(answer) > 0:
        ax4.add_patch(patch_black)
        radio_centers = []
        for component in components:
            bbox = component[0]['bbox']

            # Draw centers of bounding boxes
            xradiocen = np.median((bbox[0],bbox[2])) / first_ir_scale_x
            yradiocen = np.median((bbox[1],bbox[3])) / first_ir_scale_y
            radio_centers.append((xradiocen,yradiocen))

            ax4.scatter(xradiocen,yradiocen, c='g', marker='s', s=15, alpha=1)

            # Draw edge of bounding box

            xradiomin = bbox[2] / first_ir_scale_x
            xradiomax = bbox[0] / first_ir_scale_x
            yradiomin = bbox[3] / first_ir_scale_y
            yradiomax = bbox[1] / first_ir_scale_y
            ax4.plot([xradiomin,xradiomin,xradiomax,xradiomax,xradiomin],[yradiomin,yradiomax,yradiomax,yradiomin,yradiomin],color='g')

        for ans in answer:
            if answer[ans].has_key('ir_peak'):
                # Optical counterpart position
                xc,yc = answer[ans]['ir_peak']     

                # Position of radio sources for multi-peaked, single-component subjects
                if dbltype == "mps":
                    local_maxima = mps_cc(subject,pathdict,plot=False,verbose=False)
                    suffix = '' if len(local_maxima) == 1 else 's'
                    assert len(local_maxima) >= 2, \
                        "%i peak%s in first radio component of %s; must have exactly 2 peaks to plot bending angle using mps method." % (len(local_maxima),suffix,zooniverse_id)
                    x1 = local_maxima[0][1][0] / first_ir_scale_x
                    y1 = local_maxima[0][1][1] / first_ir_scale_y
                    x2 = local_maxima[1][1][0] / first_ir_scale_x
                    y2 = local_maxima[1][1][1] / first_ir_scale_y
                    ax4.scatter(x1,y1, color='darkorange', marker='s', s=15, alpha=1)
                    ax4.scatter(x2,y2, color='darkorange', marker='s', s=15, alpha=1)

                # Position of radio sources for double-lobed, two-component subjects
                elif len(radio_centers) == 2:
                    x1,y1 = radio_centers[0]
                    x2,y2 = radio_centers[1]
                else:
                    raise ValueError("Centers of radio boxes not defined.")

                m1 = (y1 - yc) / (x1 - xc)
                b1 = yc - m1*xc
                m2 = (y2 - yc) / (x2 - xc)
                b2 = yc - m2*xc

                xedge1 = 0 if x1 < xc else 500
                yedge1 = y1 - (x1-xedge1)*(yc-y1)/(xc-x1)

                xedge2 = 0 if x2 < xc else 500
                yedge2 = y2 - (x2-xedge2)*(yc-y2)/(xc-x2)

                # Draw and annotate the the bending angle

                ax4.plot([xedge1,xc],[yedge1,yc],color='orange',linestyle='--')
                ax4.plot([xedge2,xc],[yedge2,yc],color='orange',linestyle='--')
                alpha_deg = bending_angle(xc,yc,x1,y1,x2,y2) * 180/np.pi
                ax4.text(550,0,r'$\alpha$ = %.1f deg' % alpha_deg,fontsize=11)

                # Draw vector pointing north

                # Draw the bisector vector
                '''
                yd = y_bisect(xc,yc,xedge1,yedge1,xedge2,yedge2)
                ax4.arrow(xc,yc,-xc,yd-yc,head_width=20, head_length=40, fc='blue', ec='blue')
                '''

                # Compute the position angle with respect to north
                phi_deg = position_angle(xc,500-yc,x1,500-y1,x2,500-y2) * 180/np.pi
                ax4.text(550,50,r'$\phi$ = %.1f deg' % phi_deg,fontsize=11)
                ax4.arrow(xc,yc,0,-yc,head_width=20, head_length=40, fc='grey', ec='grey',ls='dotted')

            else:
                print "No peak for %s" % zooniverse_id


    ax4.yaxis.tick_right()
    
    ax1.get_xaxis().set_ticks([0,100,200,300,400])
    ax2.get_xaxis().set_ticks([0,100,200,300,400])
    ax3.get_xaxis().set_ticks([0,100,200,300,400])
    ax4.get_xaxis().set_ticks([0,100,200,300,400,500])

    plt.subplots_adjust(wspace=0.02)
    
    # Save hard copy of the figure
    if savefig:
        fig.savefig('%s/bending_angles/plots/individual/%sba_%s.pdf' % (rgz_dir,anglepath,zooniverse_id))
        plt.close()
    else:
        plt.show()

    # Close figure after it's done; otherwise mpl complains about having thousands of stuff open
    
    return None
Esempio n. 11
0
import consensus

# FIRST
first = consensus.checksum('ARG00029ls')
consensus.plot_consensus(first)

# ATLAS
atlas = consensus.checksum('ARG0003r18')
consensus.plot_consensus(atlas)


Esempio n. 12
0
def plot_one_triple(zooniverse_id,
                    pathdict,
                    figno=1,
                    savefig=False,
                    anglepath=''):

    # Make a four-panel plot of the consensus identification with marked bending angle and position angle for a triple source

    cons = consensus.checksum(zooniverse_id)

    subject = subjects.find_one({'zooniverse_id': zooniverse_id})
    contours = get_contours(subject, pathdict)
    radio_components = contours['contours']

    # Plot image

    answer = cons['answer']

    # Download contour data

    sf_x = 500. / contours['width']
    sf_y = 500. / contours['height']

    verts_all = []
    codes_all = []
    components = contours['contours']

    for comp in components:

        # Order of bounding box components is (xmax,ymax,xmin,ymin)
        comp_xmax, comp_ymax, comp_xmin, comp_ymin = comp[0]['bbox']

        # Only plot radio components identified by the users as the consensus;
        # check on the xmax value to make sure
        for v in answer.itervalues():
            if comp_xmax in v['xmax']:

                for idx, level in enumerate(comp):
                    verts = [((p['x']) * sf_x, (p['y'] - 1) * sf_y)
                             for p in level['arr']]

                    codes = np.ones(len(verts), int) * Path.LINETO
                    codes[0] = Path.MOVETO

                    verts_all.extend(verts)
                    codes_all.extend(codes)

    try:
        path = Path(verts_all, codes_all)
        patch_black = patches.PathPatch(path,
                                        facecolor='none',
                                        edgecolor='black',
                                        lw=1)
    except AssertionError:
        print 'Users found no components for consensus match of %s' % zooniverse_id

    # Plot the infrared results

    fig = plt.figure(figno, (15, 4))
    fig.clf()
    ax3 = fig.add_subplot(143)
    ax4 = fig.add_subplot(144)

    colormaparr = [
        cm.hot_r, cm.Blues, cm.RdPu, cm.Greens, cm.PuBu, cm.YlGn, cm.Greys
    ][::-1]
    colorarr = ['r', 'b', 'm', 'g', 'c', 'y', 'k'][::-1]

    if len(answer) > 0:  # At least one galaxy was identified
        for idx, ans in enumerate(answer.itervalues()):

            if ans.has_key('peak_data'):

                # Plot the KDE map
                colormap = colormaparr.pop()
                ax3.imshow(np.rot90(ans['peak_data']['Z']),
                           cmap=colormap,
                           extent=[xmin, xmax, ymin, ymax])

                # Plot individual sources
                color = colorarr.pop()
                x_plot, y_plot = ans['ir_x'], ans['ir_y']
                ax3.scatter(x_plot,
                            y_plot,
                            c=color,
                            marker='o',
                            s=10,
                            alpha=1. / len(x_plot))

                ax4.plot([ans['ir_peak'][0]], [ans['ir_peak'][1]],
                         color=color,
                         marker='*',
                         markersize=12)

            elif ans.has_key('ir'):
                color = colorarr.pop()
                x_plot, y_plot = ans['ir']
                ax3.plot([x_plot], [y_plot],
                         color=color,
                         marker='o',
                         markersize=2)
                ax4.plot([x_plot], [y_plot],
                         color=color,
                         marker='*',
                         markersize=12)

            else:
                ax4.text(550, idx * 25, '#%i - no IR host' % idx, fontsize=11)

    ax3.set_xlim([0, 500])
    ax3.set_ylim([500, 0])
    ax3.set_title(zooniverse_id)
    ax3.set_aspect('equal')

    ax4.set_xlim([0, 500])
    ax4.set_ylim([500, 0])
    ax4.set_title('Consensus (%i/%i users)' %
                  (cons['n_users'], cons['n_total']))

    ax4.set_aspect('equal')

    # Display IR and radio images

    url_standard = subject['location']['standard']
    im_standard = Image.open(
        cStringIO.StringIO(urllib.urlopen(url_standard).read()))
    ax1 = fig.add_subplot(141)
    ax1.imshow(im_standard, origin='upper')
    ax1.set_title('WISE')

    url_radio = subject['location']['radio']
    im_radio = Image.open(cStringIO.StringIO(urllib.urlopen(url_radio).read()))
    ax2 = fig.add_subplot(142)
    ax2.imshow(im_radio, origin='upper')
    ax2.set_title(subject['metadata']['source'])
    ax2.get_yaxis().set_ticklabels([])

    ax3.get_yaxis().set_ticklabels([])

    # Plot contours identified as the consensus
    if len(answer) > 0:
        ax4.add_patch(patch_black)
        # Add centers of bounding boxes
        for comp in components:
            bbox_radio = comp[0]['bbox']
            bbox_ir = bbox_radio_to_ir(bbox_radio)
            xrad = np.median((bbox_ir[0], bbox_ir[2]))
            yrad = np.median((bbox_ir[1], bbox_ir[3]))
            ax4.scatter(xrad, yrad, c='g', marker='s', s=15, alpha=1)

            dbx = [bbox_ir[i] for i in (2, 2, 0, 0, 2)]
            dby = [bbox_ir[i] for i in (3, 1, 1, 3, 3)]
            ax4.plot(dbx, dby, color='g')

        radiobeamsize = 5.  # arcsec
        imagesize = 3.  # arcmin
        imagescale = IMG_HEIGHT_NEW / imagesize / 60.  # pixel / arcsec
        radio_tol = radiobeamsize * imagescale

        for ans in answer:
            if answer[ans].has_key('ir_peak'):
                # Optical counterpart position
                xc, yc = answer[ans]['ir_peak']

                # Measure all positions in radio pixel coordinates
                radio_centroids = pix_radio(components)

                maxdist = 0
                for centroid in radio_centroids:
                    d = pix_dist(xc, yc, centroid[0], centroid[1])
                    maxdist = d if d > maxdist else maxdist
                    if d <= radio_tol:
                        middle_radio = centroid
                        radio_centroids.remove(middle_radio)

                        x1 = radio_centroids[0][0]
                        y1 = radio_centroids[0][1]
                        x2 = radio_centroids[1][0]
                        y2 = radio_centroids[1][1]

                if len(radio_centroids) == 2:

                    m1 = (y1 - yc) / (x1 - xc)
                    b1 = yc - m1 * xc
                    m2 = (y2 - yc) / (x2 - xc)
                    b2 = yc - m2 * xc

                    xedge1 = 0 if x1 < xc else 500
                    yedge1 = y1 - (x1 - xedge1) * (yc - y1) / (xc - x1)

                    xedge2 = 0 if x2 < xc else 500
                    yedge2 = y2 - (x2 - xedge2) * (yc - y2) / (xc - x2)

                    # Draw and annotate the the bending angle

                    ax4.plot([xedge1, xc], [yedge1, yc],
                             color='orange',
                             linestyle='--')
                    ax4.plot([xedge2, xc], [yedge2, yc],
                             color='orange',
                             linestyle='--')
                    alpha_deg = bending_angle(xc, yc, x1, y1, x2,
                                              y2) * 180 / np.pi
                    ax4.text(550,
                             0,
                             r'$\alpha$ = %.1f deg' % alpha_deg,
                             fontsize=11)

                else:
                    print "\tDidn't find match to optical ID for triple radio source %s" % zooniverse_id

            else:
                print "\tNo IR peak for %s" % zooniverse_id

    ax4.yaxis.tick_right()

    ax1.get_xaxis().set_ticks([0, 100, 200, 300, 400])
    ax2.get_xaxis().set_ticks([0, 100, 200, 300, 400])
    ax3.get_xaxis().set_ticks([0, 100, 200, 300, 400])
    ax4.get_xaxis().set_ticks([0, 100, 200, 300, 400, 500])

    plt.subplots_adjust(wspace=0.02)

    # Save hard copy of the figure
    if savefig:
        fig.savefig(
            '{0:}/bending_angles/plots/individual/triples/{1:}ba_{2:}.pdf'.
            format(rgz_dir, anglepath, zooniverse_id))
        plt.close()
    else:
        plt.show()

    # Close figure after it's done; otherwise mpl complains about having thousands of stuff open

    return None
Esempio n. 13
0
def plot_one_double(zooniverse_id,
                    pathdict,
                    figno=1,
                    savefig=False,
                    anglepath='',
                    dbltype='radio'):

    # Make a four-panel plot of the consensus identification with marked bending angle and position angle for a double source

    cons = consensus.checksum(zooniverse_id)

    subject = subjects.find_one({'zooniverse_id': zooniverse_id})
    contours = get_contours(subject, pathdict)
    radio_components = contours['contours']

    # Plot image

    answer = cons['answer']

    # Download contour data

    sf_x = 500. / contours['width']
    sf_y = 500. / contours['height']

    verts_all = []
    codes_all = []
    components = contours['contours']

    for comp in components:

        # Order of bounding box components is (xmax,ymax,xmin,ymin)
        comp_xmax, comp_ymax, comp_xmin, comp_ymin = comp[0]['bbox']

        # Only plot radio components identified by the users as the consensus;
        # check on the xmax value to make sure
        for v in answer.itervalues():
            if comp_xmax in v['xmax']:

                for idx, level in enumerate(comp):
                    verts = [((p['x']) * sf_x, (p['y'] - 1) * sf_y)
                             for p in level['arr']]

                    codes = np.ones(len(verts), int) * Path.LINETO
                    codes[0] = Path.MOVETO

                    verts_all.extend(verts)
                    codes_all.extend(codes)

    try:
        path = Path(verts_all, codes_all)
        patch_black = patches.PathPatch(path,
                                        facecolor='none',
                                        edgecolor='black',
                                        lw=1)
    except AssertionError:
        print 'Users found no components for consensus match of %s' % zooniverse_id

    # Plot the infrared results

    fig = plt.figure(figno, (15, 4))
    fig.clf()
    ax3 = fig.add_subplot(143)
    ax4 = fig.add_subplot(144)

    colormaparr = [
        cm.hot_r, cm.Blues, cm.RdPu, cm.Greens, cm.PuBu, cm.YlGn, cm.Greys
    ][::-1]
    colorarr = ['r', 'b', 'm', 'g', 'c', 'y', 'k'][::-1]

    if len(answer) > 0:  # At least one galaxy was identified
        for idx, ans in enumerate(answer.itervalues()):

            if ans.has_key('peak_data'):

                # Plot the KDE map
                colormap = colormaparr.pop()
                ax3.imshow(np.rot90(ans['peak_data']['Z']),
                           cmap=colormap,
                           extent=[xmin, xmax, ymin, ymax])

                # Plot individual sources
                color = colorarr.pop()
                '''
                x_plot = [xt * 500./424 for xt in ans['ir_x'] if xt != -99.0]
                y_plot = [yt * 500./424 for yt in ans['ir_y'] if yt != -99.0]
                '''
                x_plot, y_plot = ans['ir_x'], ans['ir_y']
                ax3.scatter(x_plot,
                            y_plot,
                            c=color,
                            marker='o',
                            s=10,
                            alpha=1. / len(x_plot))

                ax4.plot([ans['ir_peak'][0]], [ans['ir_peak'][1]],
                         color=color,
                         marker='*',
                         markersize=12)

            elif ans.has_key('ir'):
                color = colorarr.pop()
                x_plot, y_plot = ans['ir']
                ax3.plot([x_plot], [y_plot],
                         color=color,
                         marker='o',
                         markersize=2)
                ax4.plot([x_plot], [y_plot],
                         color=color,
                         marker='*',
                         markersize=12)
            else:
                ax4.text(550, idx * 25, '#%i - no IR host' % idx, fontsize=11)

    ax3.set_xlim([0, 500])
    ax3.set_ylim([500, 0])
    ax3.set_title(zooniverse_id)
    ax3.set_aspect('equal')

    ax4.set_xlim([0, 500])
    ax4.set_ylim([500, 0])
    ax4.set_title('Consensus (%i/%i users)' %
                  (cons['n_users'], cons['n_total']))

    ax4.set_aspect('equal')

    # Display IR and radio images

    url_standard = subject['location']['standard']
    im_standard = Image.open(
        cStringIO.StringIO(urllib.urlopen(url_standard).read()))
    ax1 = fig.add_subplot(141)
    ax1.imshow(im_standard, origin='upper')
    ax1.set_title('WISE')

    url_radio = subject['location']['radio']
    im_radio = Image.open(cStringIO.StringIO(urllib.urlopen(url_radio).read()))
    ax2 = fig.add_subplot(142)
    ax2.imshow(im_radio, origin='upper')
    ax2.set_title(subject['metadata']['source'])
    ax2.get_yaxis().set_ticklabels([])

    ax3.get_yaxis().set_ticklabels([])

    # Plot contours identified as the consensus
    if len(answer) > 0:
        ax4.add_patch(patch_black)
        radio_centers = []
        for component in components:
            bbox = component[0]['bbox']

            # Draw centers of bounding boxes
            xradiocen = np.median((bbox[0], bbox[2])) / first_ir_scale_x
            yradiocen = np.median((bbox[1], bbox[3])) / first_ir_scale_y
            radio_centers.append((xradiocen, yradiocen))

            ax4.scatter(xradiocen, yradiocen, c='g', marker='s', s=15, alpha=1)

            # Draw edge of bounding box

            xradiomin = bbox[2] / first_ir_scale_x
            xradiomax = bbox[0] / first_ir_scale_x
            yradiomin = bbox[3] / first_ir_scale_y
            yradiomax = bbox[1] / first_ir_scale_y
            ax4.plot([xradiomin, xradiomin, xradiomax, xradiomax, xradiomin],
                     [yradiomin, yradiomax, yradiomax, yradiomin, yradiomin],
                     color='g')

        for ans in answer:
            if answer[ans].has_key('ir_peak'):
                # Optical counterpart position
                xc, yc = answer[ans]['ir_peak']

                # Position of radio sources for multi-peaked, single-component subjects
                if dbltype == "mps":
                    local_maxima = mps_cc(subject,
                                          pathdict,
                                          plot=False,
                                          verbose=False)
                    suffix = '' if len(local_maxima) == 1 else 's'
                    assert len(local_maxima) >= 2, \
                        "%i peak%s in first radio component of %s; must have exactly 2 peaks to plot bending angle using mps method." % (len(local_maxima),suffix,zooniverse_id)
                    x1 = local_maxima[0][1][0] / first_ir_scale_x
                    y1 = local_maxima[0][1][1] / first_ir_scale_y
                    x2 = local_maxima[1][1][0] / first_ir_scale_x
                    y2 = local_maxima[1][1][1] / first_ir_scale_y
                    ax4.scatter(x1,
                                y1,
                                color='darkorange',
                                marker='s',
                                s=15,
                                alpha=1)
                    ax4.scatter(x2,
                                y2,
                                color='darkorange',
                                marker='s',
                                s=15,
                                alpha=1)

                # Position of radio sources for double-lobed, two-component subjects
                elif len(radio_centers) == 2:
                    x1, y1 = radio_centers[0]
                    x2, y2 = radio_centers[1]
                else:
                    raise ValueError("Centers of radio boxes not defined.")

                m1 = (y1 - yc) / (x1 - xc)
                b1 = yc - m1 * xc
                m2 = (y2 - yc) / (x2 - xc)
                b2 = yc - m2 * xc

                xedge1 = 0 if x1 < xc else 500
                yedge1 = y1 - (x1 - xedge1) * (yc - y1) / (xc - x1)

                xedge2 = 0 if x2 < xc else 500
                yedge2 = y2 - (x2 - xedge2) * (yc - y2) / (xc - x2)

                # Draw and annotate the the bending angle

                ax4.plot([xedge1, xc], [yedge1, yc],
                         color='orange',
                         linestyle='--')
                ax4.plot([xedge2, xc], [yedge2, yc],
                         color='orange',
                         linestyle='--')
                alpha_deg = bending_angle(xc, yc, x1, y1, x2, y2) * 180 / np.pi
                ax4.text(550,
                         0,
                         r'$\alpha$ = %.1f deg' % alpha_deg,
                         fontsize=11)

                # Draw vector pointing north

                # Draw the bisector vector
                '''
                yd = y_bisect(xc,yc,xedge1,yedge1,xedge2,yedge2)
                ax4.arrow(xc,yc,-xc,yd-yc,head_width=20, head_length=40, fc='blue', ec='blue')
                '''

                # Compute the position angle with respect to north
                phi_deg = position_angle(xc, 500 - yc, x1, 500 - y1, x2,
                                         500 - y2) * 180 / np.pi
                ax4.text(550, 50, r'$\phi$ = %.1f deg' % phi_deg, fontsize=11)
                ax4.arrow(xc,
                          yc,
                          0,
                          -yc,
                          head_width=20,
                          head_length=40,
                          fc='grey',
                          ec='grey',
                          ls='dotted')

            else:
                print "No peak for %s" % zooniverse_id

    ax4.yaxis.tick_right()

    ax1.get_xaxis().set_ticks([0, 100, 200, 300, 400])
    ax2.get_xaxis().set_ticks([0, 100, 200, 300, 400])
    ax3.get_xaxis().set_ticks([0, 100, 200, 300, 400])
    ax4.get_xaxis().set_ticks([0, 100, 200, 300, 400, 500])

    plt.subplots_adjust(wspace=0.02)

    # Save hard copy of the figure
    if savefig:
        fig.savefig('%s/bending_angles/plots/individual/%sba_%s.pdf' %
                    (rgz_dir, anglepath, zooniverse_id))
        plt.close()
    else:
        plt.show()

    # Close figure after it's done; otherwise mpl complains about having thousands of stuff open

    return None
Esempio n. 14
0
def mps_bending_angle(consensus_level=0.50):

    # Compute the bending and position angles for double-peaked, single-contour sources with optical counterparts

    tstart = time.time()

    # Load data
    df = pd.read_csv('%s/bending_angles/multipeaked_singles_cc.csv' % rgz_dir,
                     delimiter=',')

    df2 = df[(df['ntotal'] == 2)]

    with open('%s/bending_angles/angles_multipeaked_singles.csv' % rgz_dir,
              'w') as f:

        print >> f, 'zooniverse_id,bending_angle,position_angle'

        # get optical counterpart for zooniverse_id (loop over eventually)

        df2_pair1 = df2[::2]
        df2_pair2 = df2[1::2]
        _zid = np.array(df2_pair1['zooniverse_id'])
        _x1 = np.array(df2_pair1['xc'])
        _y1 = np.array(df2_pair1['yc'])
        _x2 = np.array(df2_pair2['xc'])
        _y2 = np.array(df2_pair2['yc'])

        for zooniverse_id, x1, y1, x2, y2 in zip(_zid, _x1, _y1, _x2, _y2):

            c = consensus.checksum(zooniverse_id)
            try:
                if (len(c['answer']) == 1) and (
                        c['n_users'] / float(c['n_total']) >= consensus_level):
                    if c['answer'][c['answer'].keys()[0]].has_key('ir_peak'):
                        peak_x, peak_y = c['answer'][c['answer'].keys()
                                                     [0]]['ir_peak']

                        ir_x = peak_x * first_ir_scale_x
                        ir_y = peak_y * first_ir_scale_y
                        alpha = bending_angle(ir_x, ir_y, x1, y1, x2, y2)
                        alpha_deg = alpha * 180. / np.pi
                        phi = position_angle(ir_x, ir_y, x1, y1, x2, y2)
                        phi_deg = phi * 180. / np.pi

                        print >> f, '{0:s},{1:.4f},{2:.4f}'.format(
                            zooniverse_id, alpha_deg, phi_deg)

                else:
                    print "Had more than 1 IR sources and/or less than {0:.2f} percent consensus for {1:s}".format(
                        consensus_level, zooniverse_id)
            except TypeError:
                print "No 'answer' key for %s" % zooniverse_id

    # Timing the process
    tend = time.time()

    n = len(df2) / 2
    print '%.2f minutes for %i subjects' % ((tend - tstart) / 60., n)
    print '%.2f subjects per second' % (n / (tend - tstart))

    return None