def construct(self,weightNum = 11,cmpltReverse = False):
        self._opt_solution = sol.Solution(self._instance)

        weightLst = self._generateWeightLst(weightNum)
        start = time.clock()
        
        for weight in weightLst:
            self._solution = sol.Solution(self._instance)
            self.c_weight = weight
#            self._robEncodeIndexLst = [1]*self._instance.robNum
            self._robTaskIDLst = [INF_INT_NUM] * self._instance.robNum
            self._robUnAllocateTaskLst = []
            for taskID in range(self._instance.robNum):
                self._robUnAllocateTaskLst.append([x for x in range(self._instance.taskNum)])
            self.constructFirstStep()
            self.estConstruct()
#            print(self._solution)
            self._solution.evaluate()
            if self._solution.objective <  self._opt_solution.objective:
                self._opt_solution = self._solution
                minWeight = weight 
#            print(self._robUnAllocateTaskLst)
#            print(self._solution)            
#            break
        end = time.clock()
        self._methodPeriod = end - start
        vaild  = False
        if self._opt_solution.objective != INF_NUM:
            vaild = True
            print(minWeight)
        return vaild,self._opt_solution
Esempio n. 2
0
    def construct(self, weightNum=11, cmpltReverse=False):
        '''        
        return a optimal solution
        '''

        self._opt_solution = sol.Solution(self._instance)
        start = time.clock()

        weightLst = self._generateWeightLst(weightNum)
        #        weightLst = [0.6]*11
        for weight in weightLst:
            self._solution = sol.Solution(self._instance)
            self.c_weight = weight
            try:
                self.constructUint()
            except Exception as e:
                print(e)
                self.deg.write(str(e) + '\n')
                continue
            else:
                makespan = self.__calMakespan()
                self._solution.evaluate()
                if self._degBool:
                    self.deg.write('weight = ' + str(self.c_weight) + '\n')
                    print('makespan = ', makespan)
                    print('realObjective = ', self._solution.objective)
                    cmpltTimeLst = [task.cmpltTime for task in self._taskLst]
                    realCmpltTimeLst = [
                        self._instance.decode.taskLst[i].cmpltTime
                        for i in range(self._instance.taskNum)
                    ]
                    print(cmpltTimeLst)
                    print(realCmpltTimeLst)
                    self.deg.write('real decode \n')
                    for i in range(self._instance.taskNum):
                        self.deg.write(
                            str(i) + ' cmpltTime = ' +
                            str(self._instance.decode.taskLst[i].cmpltTime) +
                            '\n')
                    self.deg.write('decode Encode ' + str(self._solution))
                    self.deg.flush()

                if abs(makespan - self._solution.objective) > 0.01:
                    raise Exception('the two makespans are not equal')
                if self._solution.objective < self._opt_solution.objective:
                    self._opt_solution = self._solution
#            break
        vaild = False
        end = time.clock()
        self._methodPeriod = end - start

        if self._opt_solution.objective != INF_NUM:
            vaild = True
        else:
            self.deg.write('can not get a solution \n')
        self.deg.close()
        return vaild, self._opt_solution
    def Gconstruct(self, weightNum=11, cmpltReverse=False):
        '''
        Gao's method
        '''
        start = time.clock()

        self._solution = sol.Solution(self._instance)
        self.__sortPreFirstArrTime()
        self.__sortPreFirstCmpltTime(cmpltReverse=cmpltReverse)
        weightLst = self._generateWeightLst(weightNum)
        #        print(weightLst)
        solSet = []
        for weight in weightLst:
            orderLst = []
            for key in self.arrDic:
                arrOrder = self.arrDic[key]
                cmpltOrder = self.cmpltDic[key]
                syntheticalOrder = weight * arrOrder + (1 -
                                                        weight) * cmpltOrder
                orderLst.append((key, syntheticalOrder))
#            print(orderLst)
            orderLst = sorted(orderLst, key=lambda x: x[1])
            resSolution = self.__orderLst2Sol(orderLst)
            resSolution.evaluate()
            resSolution.genNoBackTrackEncode()
            #            print(resSolution)
            if resSolution not in solSet:
                solSet.append(resSolution)
            if resSolution.objective < self._solution.objective:
                self._solution = resSolution
#        print(len(solSet))
        end = time.clock()
        self._methodPeriod = end - start
        return self._solution
Esempio n. 4
0
 def generateRandSol(self):
     resSolution = sol.Solution(self._instance)
     for i in range(self._instance.robNum):
         permLst = [x for x in range(self._instance.taskNum)]
         random.shuffle(permLst)
         for j in range(self._instance.taskNum):
             resSolution[(i, j)] = permLst[j]
     return resSolution
    def __orderLst2Sol(self, orderLst=[]):
        encodeIndLst = [0] * self._instance.robNum
        resSol = sol.Solution(self._instance)
        for orderUnit in orderLst:
            robID = orderUnit[0][0]
            taskID = orderUnit[0][1]
            resSol[(robID, encodeIndLst[robID])] = taskID
            encodeIndLst[robID] += 1


#        print(resSol)
        return resSol
Esempio n. 6
0
 def tryConstruct(self, sampleTimes=500):
     #        vaildLst = []
     #        self._solution = sol.Solution(self._instance)
     self._opt_solution = sol.Solution(self._instance)
     for i in range(sampleTimes):
         resSolution = self.generateRandSol()
         #            print(resSolution)
         resSolution.evaluate()
         #            if resSolution.objective != sys.float_info.max:
         #                vaildLst.append(resSolution.objective)
         self._evaluateNum = i + 1
         if resSolution.objective < self._opt_solution.objective:
             self._opt_solution = resSolution
    def construct(self):
        self._opt_solution = sol.Solution(self._instance)
        self._initState()
        while True:
            candLst = []                
            if self._grd_makespan == INF_NUM:
                for robID in range(self._instance.robNum):
                    unAllocateTaskLst = self._robUnAllocated[robID]
                    rob = self._robLst[robID]
                    taskID = self._grd_pair.taskID
                    if self._grd_pair.taskID in unAllocateTaskLst:
                        candidateSol = copy.deepcopy(self._opt_solution)
                        candidateSol[(robID,rob.encodeIndex)] = taskID
                        vaild,solVal = self._evaluateSol(candidateSol)                
                        if vaild:                        
                            candTuple = CandTupleClass(robID = robID, taskID = taskID, sol = candidateSol, solVal = solVal)
                            candLst.append(candTuple)
            else:
                for robID in range(self._instance.robNum):
                    unAllocateTaskLst = self._robUnAllocated[robID]
                    rob = self._robLst[robID]            
                    for taskID in unAllocateTaskLst:
                        candidateSol = copy.deepcopy(self._opt_solution)
                        candidateSol[(robID,rob.encodeIndex)] = taskID
                        vaild,solVal = self._evaluateSol(candidateSol)                
                        if vaild:                        
                            candTuple = CandTupleClass(robID = robID, taskID = taskID, sol = candidateSol, solVal = solVal)
                            candLst.append(candTuple)
            if len(candLst):                
                bestCand = min(candLst,key = cmp_to_key(self._cmpState))
                unAllocateTaskLst = self._robUnAllocated[bestCand.robID]
                unAllocateTaskLst.remove(bestCand.taskID)
                rob = self._robLst[bestCand.robID]
                rob.encodeIndex += 1            
                self._opt_solution = bestCand.sol
                print(bestCand.solVal.grdType)
                if len(self._grd_cmpltStateLst) == self._instance.taskNum:
                    if bestCand.solVal.grdType == GrdTax.sTask_MS_UC_C or bestCand.solVal.grdType == GrdTax.sTask_MS_UC_UC:
                        break
                self._grd_cmpltStateLst = bestCand.solVal.cmpltState
                self._grd_pair = RobTaskPair(robID = bestCand.robID, taskID = bestCand.taskID)
                self._grd_makespan = bestCand.solVal.makespan
#                raise Exception('sad')
                self.deg.write('_grd_pair = ' + str(self._grd_pair) + '\n')
                self.deg.write('_grd_makespan = ' + str(self._grd_makespan) + '\n')
                self.deg.write('solution = '+ str(self._opt_solution)+'\n')
                self.deg.write('ExecuteTaskNum = ' +str(len(self._grd_cmpltStateLst))+'\n')
                self.deg.flush()
            else:
                break                
        return self._opt_solution
Esempio n. 8
0
 def constrcut(self, weightNum = 11,reverse = False):
     '''
     return the the boolean of the optimal solution 
     '''
     weightLst = self._generateWeightLst(weightNum)
     self._opt_solution = sol.Solution(self._instance)    
     start = time.clock()
     
     end = time.clock()
     self._methodPeriod = end - start
     vaild  = False                
     if self._opt_solution.objective != INF_NUM:
         vaild = True
     else:
         self.deg.write('can not get a solution \n')
     return vaild,self._opt_solution
Esempio n. 9
0
 def construct(self, sampleTimes=10000):
     if self._instance.robNum <= 4 and self._instance.taskNum <= 5:
         permLst = [x for x in range(self._instance.taskNum)]
         permLst = list(
             itertools.permutations(permLst, self._instance.taskNum))
         encodeLst = itertools.product(permLst,
                                       repeat=self._instance.robNum)
         for encode in encodeLst:
             resSolution = sol.Solution(self._instance)
             for i in range(self._instance.robNum):
                 for j in range(self._instance.taskNum):
                     resSolution[(i, j)] = encode[i][j]
             resSolution.evaluate()
             if resSolution.objective < self._solution.objective:
                 self._solution = resSolution
             pass
     else:
         raise PermutationException()
     return self._solution
Esempio n. 10
0
 def __init__(self, instance):
     self._instance = instance
     self._solution = sol.Solution(self._instance)
     self.taskLst = []
     self.__initTaskStates()