Esempio n. 1
0
 def test_regularized_model_selection_lambda(self):
     x_train = TEST_DATA['rms']['x_train']
     y_train = TEST_DATA['rms']['y_train']
     x_val = TEST_DATA['rms']['x_val']
     y_val = TEST_DATA['rms']['y_val']
     M = TEST_DATA['rms']['M']
     lambda_values = TEST_DATA['rms']['lambda_values']
     lambda_org = TEST_DATA['rms']['lambda']
     _, _, _, lambda_computed = regularized_model_selection(x_train, y_train, x_val, y_val, M, lambda_values)
     self.assertAlmostEqual(lambda_org, lambda_computed, 6)
Esempio n. 2
0
 def test_regularized_model_selection_val_err(self):
     x_train = TEST_DATA['rms']['x_train']
     y_train = TEST_DATA['rms']['y_train']
     x_val = TEST_DATA['rms']['x_val']
     y_val = TEST_DATA['rms']['y_val']
     M = TEST_DATA['rms']['M']
     lambda_values = TEST_DATA['rms']['lambda_values']
     val_err = TEST_DATA['rms']['val_err']
     _, _, val_err_computed, _ = regularized_model_selection(x_train, y_train, x_val, y_val, M, lambda_values)
     self.assertAlmostEqual(val_err, val_err_computed, 6)
Esempio n. 3
0
 def test_regularized_model_selection_w(self):
     x_train = TEST_DATA['rms']['x_train']
     y_train = TEST_DATA['rms']['y_train']
     x_val = TEST_DATA['rms']['x_val']
     y_val = TEST_DATA['rms']['y_val']
     M = TEST_DATA['rms']['M']
     lambda_values = TEST_DATA['rms']['lambda_values']
     w = TEST_DATA['rms']['w']
     w_computed, _, _, _ = regularized_model_selection(x_train, y_train, x_val, y_val, M, lambda_values)
     max_diff = np.max(np.abs(w - w_computed))
     self.assertAlmostEqual(max_diff, 0, 6)
Esempio n. 4
0
    def test_regularized_model_selection_w(self):
        x_train = TEST_DATA['rms']['x_train']
        y_train = TEST_DATA['rms']['y_train']
        x_val = TEST_DATA['rms']['x_val']
        y_val = TEST_DATA['rms']['y_val']
        M = TEST_DATA['rms']['M']
        lambda_values = TEST_DATA['rms']['lambda_values']
        w_expected = TEST_DATA['rms']['w']

        w, _, _, _ = regularized_model_selection(x_train, y_train, x_val, y_val, M, lambda_values)

        self.assertEqual(np.shape(w), (8, 1))
        np.testing.assert_almost_equal(w, w_expected)
Esempio n. 5
0
    def test_regularized_model_selection_lambda(self):
        x_train = TEST_DATA['rms']['x_train']
        y_train = TEST_DATA['rms']['y_train']
        x_val = TEST_DATA['rms']['x_val']
        y_val = TEST_DATA['rms']['y_val']
        M = TEST_DATA['rms']['M']
        lambda_values = TEST_DATA['rms']['lambda_values']
        lambda_expected = TEST_DATA['rms']['lambda']

        _, _, _, lambda_ = regularized_model_selection(
            x_train, y_train, x_val, y_val, M, lambda_values)

        self.assertEqual(np.size(lambda_), 1)
        self.assertAlmostEqual(lambda_, lambda_expected)
Esempio n. 6
0
    plt.tight_layout()
    plt.draw()
    print('\n--- Wcisnij klawisz, aby kontynuowac ---')
    plt.waitforbuttonpress(0)

    print(
        '\n--- Selekcja modelu dla liniowego zadania najmniejszych kwadratow z regularyzacja ---'
    )
    print(
        '-- Stopien M=7. Liczba punktow treningowych N=50. Liczba punktow walidacyjnych N=20 --'
    )

    M = 7
    lambdas = [0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300]
    w, train_err, val_err, best_lambda = regularized_model_selection(
        data['x_train_50'], data['y_train_50'], data['x_val_20'],
        data['y_val_20'], M, lambdas)
    y_model = polynomial(x_plot, w)

    fig = plt.figure(figsize=(6, 5),
                     num='Selekcja modelu dla parametru regularyzacji')
    sub = fig.add_subplot(1, 1, 1)
    sub.set_title('M={}    Najlepsze $\lambda$={}'.format(M, best_lambda))
    plot_model(data['x_train_50'], data['y_train_50'], x_plot, y_obj, y_model,
               data['x_val_20'], data['y_val_20'], train_err, val_err)

    plt.tight_layout()
    plt.draw()
    print('\n--- Wcisnij klawisz, aby kontynuowac ---')
    plt.waitforbuttonpress(0)