Esempio n. 1
0
    def test_group_initialization(self):
        """Group initialization of weights nodes"""
        v1 = spn.IVs(num_vars=1, num_vals=2)
        v2 = spn.IVs(num_vars=1, num_vals=4)
        v3 = spn.IVs(num_vars=1, num_vals=2)
        v4 = spn.IVs(num_vars=1, num_vals=2)
        # Sum
        s1 = spn.Sum(v1)
        s1.generate_weights(tf.initializers.constant([0.2, 0.3]))
        s2 = spn.Sum(v2)
        s2.generate_weights(tf.initializers.constant(5))
        # ParSums
        s3 = spn.ParSums(*[v3, v4], num_sums=2)
        s3.generate_weights(
            tf.initializers.constant([0.1, 0.2, 0.3, 0.4, 0.4, 0.3, 0.2, 0.1]))
        s4 = spn.ParSums(*[v1, v2, v3, v4], num_sums=3)
        s4.generate_weights(tf.initializers.constant(2.0))
        # Product
        p = spn.Product(s1, s2, s3, s4)
        init = spn.initialize_weights(p)

        with self.test_session() as sess:
            sess.run([init])
            val1 = sess.run(s1.weights.node.get_value())
            val2 = sess.run(s2.weights.node.get_value())
            val3 = sess.run(s3.weights.node.get_value())
            val4 = sess.run(s4.weights.node.get_value())
            val1_log = sess.run(tf.exp(s1.weights.node.get_log_value()))
            val2_log = sess.run(tf.exp(s2.weights.node.get_log_value()))
            val3_log = sess.run(tf.exp(s3.weights.node.get_log_value()))
            val4_log = sess.run(tf.exp(s4.weights.node.get_log_value()))

        self.assertEqual(val1.dtype, spn.conf.dtype.as_numpy_dtype())
        self.assertEqual(val2.dtype, spn.conf.dtype.as_numpy_dtype())
        self.assertEqual(val3.dtype, spn.conf.dtype.as_numpy_dtype())
        self.assertEqual(val4.dtype, spn.conf.dtype.as_numpy_dtype())
        np.testing.assert_array_almost_equal(val1, [[0.4, 0.6]])
        np.testing.assert_array_almost_equal(val2, [[0.25, 0.25, 0.25, 0.25]])
        np.testing.assert_array_almost_equal(
            val3, [[0.1, 0.2, 0.3, 0.4], [0.4, 0.3, 0.2, 0.1]])
        np.testing.assert_array_almost_equal(
            val4, [[0.1] * 10, [0.1] * 10, [0.1] * 10])
        self.assertEqual(val1_log.dtype, spn.conf.dtype.as_numpy_dtype())
        self.assertEqual(val2_log.dtype, spn.conf.dtype.as_numpy_dtype())
        self.assertEqual(val3_log.dtype, spn.conf.dtype.as_numpy_dtype())
        self.assertEqual(val4_log.dtype, spn.conf.dtype.as_numpy_dtype())
        np.testing.assert_array_almost_equal(val1_log, [[0.4, 0.6]])
        np.testing.assert_array_almost_equal(val2_log,
                                             [[0.25, 0.25, 0.25, 0.25]])
        np.testing.assert_array_almost_equal(
            val3, [[0.1, 0.2, 0.3, 0.4], [0.4, 0.3, 0.2, 0.1]])
        np.testing.assert_array_almost_equal(
            val4, [[0.1] * 10, [0.1] * 10, [0.1] * 10])
Esempio n. 2
0
    def par_sums(inputs,
                 indices,
                 ivs,
                 num_sums,
                 inf_type,
                 log=True,
                 output=None):
        if indices is None:
            inputs = [inputs]
        else:
            inputs = [(inputs, indices)]

        # Generate a single ParSums node, modeling 'num_sums' sum nodes
        # within, connecting it to inputs and ivs
        s = spn.ParSums(*inputs, num_sums=num_sums, ivs=ivs[0])
        # Generate weights of the ParSums node
        s.generate_weights()

        # Connect the ParSums nodes to a single root Sum node and generate
        # its weights
        root = spn.Sum(s)
        root.generate_weights()

        if log:
            value_op = root.get_log_value(inference_type=inf_type)
        else:
            value_op = root.get_value(inference_type=inf_type)

        return spn.initialize_weights(root), value_op
Esempio n. 3
0
    def poons_multi(inputs,
                    num_vals,
                    num_mixtures,
                    num_subsets,
                    inf_type,
                    log=False,
                    output=None):

        # Build a POON-like network with multi-op nodes
        subsets = [
            spn.ParSums((inputs, list(range(i * num_vals,
                                            (i + 1) * num_vals))),
                        num_sums=num_mixtures) for i in range(num_subsets)
        ]
        products = spn.PermProducts(*subsets)
        root = spn.Sum(products, name="root")

        # Generate dense SPN and all weights in the network
        spn.generate_weights(root)

        # Generate path ops based on inf_type and log
        if log:
            mpe_path_gen = spn.MPEPath(value_inference_type=inf_type, log=True)
        else:
            mpe_path_gen = spn.MPEPath(value_inference_type=inf_type,
                                       log=False)

        mpe_path_gen.get_mpe_path(root)
        path_ops = [
            mpe_path_gen.counts[inp]
            for inp in (inputs if isinstance(inputs, list) else [inputs])
        ]
        return root, spn.initialize_weights(root), path_ops
Esempio n. 4
0
    def par_sums(inputs,
                 indices,
                 ivs,
                 num_sums,
                 inf_type=None,
                 log=True,
                 output=None):
        if indices is None:
            inputs = [inputs]
        else:
            inputs = [(inputs, indices)]

        # Generate a single ParSums node, modeling 'num_sums' sum nodes
        # within, connecting it to inputs and ivs
        s = spn.ParSums(*inputs, num_sums=num_sums, ivs=ivs[-1])
        # Generate weights of the ParSums node
        weights = s.generate_weights()

        # Connect the ParSums nodes to a single root Sum node and generate
        # its weights
        root = spn.Sum(s)
        root.generate_weights()

        if log:
            mpe_path_gen = spn.MPEPath(value_inference_type=inf_type, log=True)
        else:
            mpe_path_gen = spn.MPEPath(value_inference_type=inf_type,
                                       log=False)

        mpe_path_gen.get_mpe_path(root)
        path_op = [mpe_path_gen.counts[weights]]
        return spn.initialize_weights(root), path_op
Esempio n. 5
0
    def _build_op(self, inputs, placeholders, conf):
        """ Creates the graph using only ParSum nodes """
        # TODO make sure the ivs are correct
        sum_indices, weights, ivs = inputs.indices, inputs.weights, None
        log, inf_type = conf.log, conf.inf_type
        weights = np.split(
            weights,
            np.cumsum([len(ind) * inputs.num_parallel
                       for ind in sum_indices])[:-1])

        parallel_sum_nodes = []
        for ind in sum_indices:
            parallel_sum_nodes.append(
                spn.ParSums((placeholders[0], ind),
                            num_sums=inputs.num_parallel))

        weight_nodes = [
            self._generate_weights(node, w.tolist())
            for node, w in zip(parallel_sum_nodes, weights)
        ]
        if ivs:
            [s.set_ivs(iv) for s, iv in zip(parallel_sum_nodes, ivs)]
        root = spn.Sum(*parallel_sum_nodes)
        self._generate_weights(root)

        mpe_path_gen = spn.MPEPath(value_inference_type=inf_type, log=log)
        mpe_path_gen.get_mpe_path(root)
        path_op = [mpe_path_gen.counts[w] for w in weight_nodes]
        input_counts = [mpe_path_gen.counts[inp] for inp in placeholders]

        return tf.tuple(
            path_op + input_counts)[:len(path_op)], self._initialize_from(root)
Esempio n. 6
0
    def poons_multi(inputs, num_vals, num_mixtures, num_subsets, inf_type,
                    log=False, output=None):

        # Build a POON-like network with multi-op nodes
        subsets = [spn.ParSums((inputs, list(range(i*num_vals, (i+1)*num_vals))),
                               num_sums=num_mixtures) for i in range(num_subsets)]
        products = spn.PermProducts(*subsets)
        root = spn.Sum(products, name="root")

        # Generate dense SPN and all weights in the network
        spn.generate_weights(root)

        # Generate value ops based on inf_type and log
        if log:
            value_op = root.get_log_value(inference_type=inf_type)
        else:
            value_op = root.get_value(inference_type=inf_type)

        return root, spn.initialize_weights(root), value_op
    def par_sums(inputs,
                 sum_indices,
                 repetitions,
                 inf_type,
                 log=False,
                 ivs=None):
        """ Creates the graph using only ParSum nodes """
        parallel_sum_nodes = []
        for ind in sum_indices:
            parallel_sum_nodes.append(
                spn.ParSums((inputs, ind), num_sums=repetitions))
        [s.generate_weights() for s in parallel_sum_nodes]
        if ivs:
            [s.set_ivs(iv) for s, iv in zip(parallel_sum_nodes, ivs)]

        root, value_op = Ops._build_root_and_value(inf_type, log,
                                                   parallel_sum_nodes)

        return spn.initialize_weights(root), value_op
Esempio n. 8
0
    def test_generate_spn(self, num_decomps, num_subsets, num_mixtures,
                          num_input_mixtures, input_dims, input_dist, balanced,
                          node_type, log_weights):
        """A generic test for DenseSPNGenerator."""

        if input_dist == spn.DenseSPNGenerator.InputDist.RAW \
            and num_input_mixtures != 1:
            # Redundant test case, so just return
            return

        # Input parameters
        num_inputs = input_dims[0]
        num_vars = input_dims[1]
        num_vals = 2

        printc("\n- num_inputs: %s" % num_inputs)
        printc("- num_vars: %s" % num_vars)
        printc("- num_vals: %s" % num_vals)
        printc("- num_decomps: %s" % num_decomps)
        printc("- num_subsets: %s" % num_subsets)
        printc("- num_mixtures: %s" % num_mixtures)
        printc("- input_dist: %s" %
               ("MIXTURE" if input_dist
                == spn.DenseSPNGenerator.InputDist.MIXTURE else "RAW"))
        printc("- balanced: %s" % balanced)
        printc("- num_input_mixtures: %s" % num_input_mixtures)
        printc("- node_type: %s" %
               ("SINGLE" if node_type == spn.DenseSPNGenerator.NodeType.SINGLE
                else "BLOCK" if node_type
                == spn.DenseSPNGenerator.NodeType.BLOCK else "LAYER"))
        printc("- log_weights: %s" % log_weights)

        # Inputs
        inputs = [
            spn.IVs(num_vars=num_vars,
                    num_vals=num_vals,
                    name=("IVs_%d" % (i + 1))) for i in range(num_inputs)
        ]

        gen = spn.DenseSPNGenerator(num_decomps=num_decomps,
                                    num_subsets=num_subsets,
                                    num_mixtures=num_mixtures,
                                    input_dist=input_dist,
                                    balanced=balanced,
                                    num_input_mixtures=num_input_mixtures,
                                    node_type=node_type)

        # Generate Sub-SPNs
        sub_spns = [
            gen.generate(*inputs, root_name=("sub_root_%d" % (i + 1)))
            for i in range(3)
        ]

        # Generate random weights for the first sub-SPN
        with tf.name_scope("Weights"):
            spn.generate_weights(sub_spns[0],
                                 tf.initializers.random_uniform(0.0, 1.0),
                                 log=log_weights)

        # Initialize weights of the first sub-SPN
        sub_spn_init = spn.initialize_weights(sub_spns[0])

        # Testing validity of the first sub-SPN
        self.assertTrue(sub_spns[0].is_valid())

        # Generate value ops of the first sub-SPN
        sub_spn_v = sub_spns[0].get_value()
        sub_spn_v_log = sub_spns[0].get_log_value()

        # Generate path ops of the first sub-SPN
        sub_spn_mpe_path_gen = spn.MPEPath(log=False)
        sub_spn_mpe_path_gen_log = spn.MPEPath(log=True)
        sub_spn_mpe_path_gen.get_mpe_path(sub_spns[0])
        sub_spn_mpe_path_gen_log.get_mpe_path(sub_spns[0])
        sub_spn_path = [sub_spn_mpe_path_gen.counts[inp] for inp in inputs]
        sub_spn_path_log = [
            sub_spn_mpe_path_gen_log.counts[inp] for inp in inputs
        ]

        # Collect all weight nodes of the first sub-SPN
        sub_spn_weight_nodes = []

        def fun(node):
            if node.is_param:
                sub_spn_weight_nodes.append(node)

        spn.traverse_graph(sub_spns[0], fun=fun)

        # Generate an upper-SPN over sub-SPNs
        products_lower = []
        for sub_spn in sub_spns:
            products_lower.append([v.node for v in sub_spn.values])

        num_top_mixtures = [2, 1, 3]
        sums_lower = []
        for prods, num_top_mix in zip(products_lower, num_top_mixtures):
            if node_type == spn.DenseSPNGenerator.NodeType.SINGLE:
                sums_lower.append(
                    [spn.Sum(*prods) for _ in range(num_top_mix)])
            elif node_type == spn.DenseSPNGenerator.NodeType.BLOCK:
                sums_lower.append([spn.ParSums(*prods, num_sums=num_top_mix)])
            else:
                sums_lower.append([
                    spn.SumsLayer(*prods * num_top_mix,
                                  num_or_size_sums=num_top_mix)
                ])

        # Generate upper-SPN
        root = gen.generate(*list(itertools.chain(*sums_lower)),
                            root_name="root")

        # Generate random weights for the SPN
        with tf.name_scope("Weights"):
            spn.generate_weights(root,
                                 tf.initializers.random_uniform(0.0, 1.0),
                                 log=log_weights)

        # Initialize weight of the SPN
        spn_init = spn.initialize_weights(root)

        # Testing validity of the SPN
        self.assertTrue(root.is_valid())

        # Generate value ops of the SPN
        spn_v = root.get_value()
        spn_v_log = root.get_log_value()

        # Generate path ops of the SPN
        spn_mpe_path_gen = spn.MPEPath(log=False)
        spn_mpe_path_gen_log = spn.MPEPath(log=True)
        spn_mpe_path_gen.get_mpe_path(root)
        spn_mpe_path_gen_log.get_mpe_path(root)
        spn_path = [spn_mpe_path_gen.counts[inp] for inp in inputs]
        spn_path_log = [spn_mpe_path_gen_log.counts[inp] for inp in inputs]

        # Collect all weight nodes in the SPN
        spn_weight_nodes = []

        def fun(node):
            if node.is_param:
                spn_weight_nodes.append(node)

        spn.traverse_graph(root, fun=fun)

        # Create a session
        with self.test_session() as sess:
            # Initializing weights
            sess.run(sub_spn_init)
            sess.run(spn_init)

            # Generate input feed
            feed = np.array(
                list(
                    itertools.product(range(num_vals),
                                      repeat=(num_inputs * num_vars))))
            batch_size = feed.shape[0]
            feed_dict = {}
            for inp, f in zip(inputs, np.split(feed, num_inputs, axis=1)):
                feed_dict[inp] = f

            # Compute all values and paths of sub-SPN
            sub_spn_out = sess.run(sub_spn_v, feed_dict=feed_dict)
            sub_spn_out_log = sess.run(tf.exp(sub_spn_v_log),
                                       feed_dict=feed_dict)
            sub_spn_out_path = sess.run(sub_spn_path, feed_dict=feed_dict)
            sub_spn_out_path_log = sess.run(sub_spn_path_log,
                                            feed_dict=feed_dict)

            # Compute all values and paths of the complete SPN
            spn_out = sess.run(spn_v, feed_dict=feed_dict)
            spn_out_log = sess.run(tf.exp(spn_v_log), feed_dict=feed_dict)
            spn_out_path = sess.run(spn_path, feed_dict=feed_dict)
            spn_out_path_log = sess.run(spn_path_log, feed_dict=feed_dict)

            # Test if partition function of the sub-SPN and of the
            # complete SPN is 1.0
            self.assertAlmostEqual(sub_spn_out.sum(), 1.0, places=6)
            self.assertAlmostEqual(sub_spn_out_log.sum(), 1.0, places=6)
            self.assertAlmostEqual(spn_out.sum(), 1.0, places=6)
            self.assertAlmostEqual(spn_out_log.sum(), 1.0, places=6)

            # Test if the sum of counts for each value of each variable
            # (6 variables, with 2 values each) = batch-size / num-vals
            self.assertEqual(
                np.sum(np.hstack(sub_spn_out_path), axis=0).tolist(),
                [batch_size // num_vals] * num_inputs * num_vars * num_vals)
            self.assertEqual(
                np.sum(np.hstack(sub_spn_out_path_log), axis=0).tolist(),
                [batch_size // num_vals] * num_inputs * num_vars * num_vals)
            self.assertEqual(
                np.sum(np.hstack(spn_out_path), axis=0).tolist(),
                [batch_size // num_vals] * num_inputs * num_vars * num_vals)
            self.assertEqual(
                np.sum(np.hstack(spn_out_path_log), axis=0).tolist(),
                [batch_size // num_vals] * num_inputs * num_vars * num_vals)