def act(self, gs: GameState) -> int:
        available_actions = gs.get_available_actions(gs.get_active_player())

        state_vec = gs.get_vectorized_state()
        predicted_Q_values = self.Q_action.predict(state_vec)

        if np.random.random() <= self.epsilon:
            chosen_action = np.random.choice(available_actions)
        else:
            chosen_action = available_actions[int(
                np.argmax(predicted_Q_values[available_actions]))]

        if self.s is not None:
            target = self.r + self.gamma * predicted_Q_values[int(
                np.argmax(self.Q_evaluation.predict(self.s)))]
            self.Q_action.train(self.s, self.a, target)

        if self.s is not None:
            update_Q_evaluation = self.tau * np.array(
                self.Q_action.model.get_weights()) + (1 - self.tau) * np.array(
                    self.Q_evaluation.model.get_weights())
            self.Q_evaluation.model.set_weights(update_Q_evaluation)

        self.s = state_vec
        self.a = to_categorical(chosen_action, self.action_space_size)
        self.r = 0.0
        self.count_state += 1

        return chosen_action
Esempio n. 2
0
    def act(self, gs: GameState) -> int:
        gs_unique_id = gs.get_unique_id()
        available_actions = gs.get_available_actions(gs.get_active_player())

        state_vec = gs.get_vectorized_state()

        mask_vec = np.zeros((self.action_space_size, ))
        mask_vec[available_actions] = 1.0

        v = self.critic.predict(state_vec)
        p = self.actor.predict(state_vec, mask_vec)

        indexes = np.arange(self.action_space_size)
        chosen_action = np.random.choice(indexes, p=p)

        # valid_actions_probability = p[available_actions]
        # valid_actions_probability_sum = np.sum(valid_actions_probability)
        # normalized_valid_action_probability = valid_actions_probability / valid_actions_probability_sum
        # #
        # chosen_action = np.random.choice(available_actions, p=normalized_valid_action_probability)

        self.v.append(v)

        self.s.append(state_vec)
        self.m.append(mask_vec)
        self.a.append(to_categorical(chosen_action, self.action_space_size))
        if not self.is_last_episode_terminal:
            self.r.append(self.r_temp)
        self.r_temp = 0.0
        self.is_last_episode_terminal = False

        return chosen_action
    def act(self, gs: GameState) -> int:
        gs_unique_id = gs.get_unique_id()
        available_actions = gs.get_available_actions(gs.get_active_player())

        state_vec = gs.get_vectorized_state()
        predicted_Q_values = self.Q.predict(state_vec)

        if np.random.random() <= self.epsilon:
            chosen_action = np.random.choice(available_actions)
        else:
            chosen_action = available_actions[int(
                np.argmax(predicted_Q_values[available_actions]))]

        if self.s is not None:
            target = self.r + self.gamma * max(
                predicted_Q_values[available_actions])
            self.Q.train(self.s, self.a, target)
            self.experience.append(
                (self.s.copy(), self.a.copy(), self.r, state_vec.copy()))
        print("experience", len(self.experience))

        if len(self.experience) % 10 == 0:
            for el in self.experience:
                target = el[2] + self.gamma * el[1]
                self.Q.train(el[0], el[1], target)
        self.s = state_vec
        self.a = to_categorical(chosen_action, self.action_space_size)
        self.r = 0.0

        return chosen_action
Esempio n. 4
0
    def act(self, gs: GameState) -> int:
        #gs_unique_id = gs.get_unique_id()
        available_actions = gs.get_available_actions(gs.get_active_player())

        state_vec = gs.get_vectorized_state()
        predicted_Q_values = self.Q.predict(state_vec)

        if np.random.random() <= self.epsilon:
            chosen_action = np.random.choice(available_actions)
        else:
            chosen_action = available_actions[int(
                np.argmax(predicted_Q_values[available_actions]))]

        if self.s is not None:
            target = self.r + self.gamma * self.alternate_Q.predict(
                state_vec)[available_actions][np.argmax(
                    self.Q.predict(state_vec)[available_actions])]
            # final_target = self.model.predict(state)
            # final_target[0][action] = target
            # self.model.fit(state, final_target, verbose=0)
            self.Q.train(self.s, self.a, target)

        self.s = state_vec
        self.a = to_categorical(chosen_action, self.action_space_size)
        self.r = 0.0

        return chosen_action
Esempio n. 5
0
    def act(self, gs: GameState) -> int:
        available_actions = gs.get_available_actions(gs.get_active_player())

        state_vec = gs.get_vectorized_state()
        predicted_Q_values = self.Q_action.predict(state_vec)

        if np.random.random() <= self.epsilon:
            chosen_action = np.random.choice(available_actions)
        else:
            chosen_action = available_actions[int(
                np.argmax(predicted_Q_values[available_actions]))]

        if self.s is not None:
            target = self.r + self.gamma * predicted_Q_values[int(
                np.argmax(self.Q_evaluation.predict(self.s)))]
            self.Q_action.train(self.s, self.a, target)
            self.experience.append(
                (self.s.copy(), self.a.copy(), self.r, state_vec.copy()))

        if len(self.experience) % 10 == 0 and len(
                self.experience) > 0 and self.epsilon > 0:

            el = sample(
                self.experience,
                len(self.experience) if len(self.experience) < 30 else 30)

            dict = {'Exp': el}
            el_state = [x[0] for x in dict['Exp']]
            el_a = [x[1] for x in dict['Exp']]
            el_r = [x[2] for x in dict['Exp']]
            el_state_plus_1 = [x[3] for x in dict['Exp']]

            predicted_Q_values_list = self.Q_action.model.predict(
                np.array(el_state_plus_1))

            dict_predict_Q_value = {'Predict': predicted_Q_values_list}

            Q_star = [
                x[int(np.argmax(self.Q_evaluation.predict(el_state[i])))]
                for i, x in enumerate(dict_predict_Q_value['Predict'])
            ]
            Q_star_np = np.array(Q_star)

            target = np.array(el_r) + self.gamma * Q_star_np

            self.Q_action.retrain(np.array(el_state), np.array(el_a), target)

        if self.s is not None:
            update_Q_evaluation = self.tau * np.array(
                self.Q_action.model.get_weights()) + (1 - self.tau) * np.array(
                    self.Q_evaluation.model.get_weights())
            self.Q_evaluation.model.set_weights(update_Q_evaluation)

        self.s = state_vec
        self.a = to_categorical(chosen_action, self.action_space_size)
        self.r = 0.0
        self.count_state += 1

        return chosen_action
    def act(self, gs: GameState) -> int:
        self.priority.append(0.001)
        self.memory.append((self.s, self.s, self.a, self.r, True))
        available_actions = gs.get_available_actions(gs.get_active_player())
        state_vec = gs.get_vectorized_state()
        predicted_Q_values = self.Q.predict(state_vec)
        if np.random.random() <= self.epsilon:
            chosen_action = np.random.choice(available_actions)
        else:
            chosen_action = available_actions[int(
                np.argmax(predicted_Q_values[available_actions]))]

        batch, importance = self.get_priority_experience_batch()
        for b, i in zip(batch, importance):
            state, next_state, action, reward, done = b
            target = reward
            if not done:
                if self.s is not None:
                    # target = target + self.gamma * self.alternate_Q.predict(state_vec)[available_actions][
                    #                 np.argmax(self.Q.predict(state_vec)[available_actions])]
                    # self.Q.train(self.s, self.a, target)
                    q_next = reward + self.gamma * self.alternate_Q.predict(
                        next_state)[available_actions][np.argmax(
                            self.Q.predict(next_state)[available_actions])]
                    target = q_next
                    q = self.alternate_Q.predict(
                        next_state)[available_actions][np.argmax(
                            self.Q.predict(next_state)[available_actions])]
                    p = (np.abs(q_next - q) + (np.e**-10))**self.alpha
                    self.priority.append(p)
                    self.memory.append(
                        (state, next_state, action, reward, done))
                    self.Q.train(self.s, self.a, target)

            imp = i**(1 - self.epsilon)
            imp = np.reshape(imp, 1)
            # self.remember(self.s, state_vec, self.a, self.r, True)

        # batch = random.choices(self.memory, k=self.batch_size)
        # for state, next_state, action, reward, done in batch:
        #     target = reward
        #     if not done:
        #         if self.s is not None:
        #             target = target + self.gamma * self.alternate_Q.predict(state_vec)[available_actions][
        #                 np.argmax(self.Q.predict(state_vec)[available_actions])]
        #             self.Q.train(self.s, self.a, target)
        #             self.remember(self.s, state_vec, self.a, self.r, True)
        self.s = state_vec
        self.a = to_categorical(chosen_action, self.action_space_size)
        self.r = 0.0
        return chosen_action
    def act(self, gs: GameState) -> int:
        available_actions = gs.get_available_actions(gs.get_active_player())

        state_vec = gs.get_vectorized_state()
        predicted_Q_values = self.Q.predict(state_vec)
        if np.random.random() <= self.epsilon:
            chosen_action = np.random.choice(available_actions)
        else:
            chosen_action = available_actions[int(
                np.argmax(predicted_Q_values[available_actions]))]

        if self.s is not None:
            target = self.r + self.gamma * max(
                predicted_Q_values[available_actions])
            self.Q.train(self.s, self.a, target)

        self.s = state_vec
        self.a = to_categorical(chosen_action, self.action_space_size)
        self.r = 0.0

        return chosen_action
    def act(self, gs: GameState) -> int:
        available_actions = gs.get_available_actions(gs.get_active_player())

        state_vec = gs.get_vectorized_state()

        action_probs = self.Q_policy_function.predict(state_vec)

        chosen_action = np.random.choice(available_actions,
                                         p=action_probs,
                                         replace=True)

        self.state.append(state_vec)
        self.rewards.append(self.r)
        self.log_probs.append(np.log(action_probs))
        self.probs.append(action_probs)
        self.action.append(chosen_action)
        self.a.append(to_categorical(chosen_action, self.action_space_size))

        self.r = 0.0

        return chosen_action
 def act(self, gs: GameState) -> int:
     available_actions = gs.get_available_actions(gs.get_active_player())
     state_vec = gs.get_vectorized_state()
     predicted_Q_values = self.Q.predict(state_vec)
     if np.random.random() <= self.epsilon:
         chosen_action = np.random.choice(available_actions)
     else:
         chosen_action = available_actions[int(
             np.argmax(predicted_Q_values[available_actions]))]
     batch = random.choices(self.memory, k=self.batch_size)
     for state, next_state, action, reward, done in batch:
         target = reward
         if not done:
             if self.s is not None:
                 target = target + self.gamma * self.alternate_Q.predict(
                     state_vec)[available_actions][np.argmax(
                         self.Q.predict(state_vec)[available_actions])]
                 self.Q.train(self.s, self.a, target)
                 self.remember(self.s, state_vec, self.a, self.r, True)
     self.s = state_vec
     self.a = to_categorical(chosen_action, self.action_space_size)
     self.r = 0.0
     return chosen_action
    def act(self, gs: GameState) -> int:

        if self.apprentice_training_count > self.apprentice_training_before_takeover:
            return gs.get_available_actions(gs.get_active_player())[np.argmax(
                self.brain.predict(np.array([
                    gs.get_vectorized_state()
                ]))[0][gs.get_available_actions(gs.get_active_player())])]

        root_hash = gs.get_unique_id()
        memory = self.memory if self.keep_memory else dict()

        if root_hash not in memory:
            ExpertApprenticeAgent.create_node_in_memory(
                memory, root_hash,
                gs.get_available_actions(gs.get_active_player()),
                gs.get_active_player())

        for i in range(self.max_iteration):
            gs_copy = gs.clone()
            s = gs_copy.get_unique_id()
            history = []

            # SELECTION
            while not gs_copy.is_game_over() and all(
                (edge['n'] > 0 for edge in memory[s])):
                chosen_edge = max(((edge, ExpertApprenticeAgent.ucb_1(edge))
                                   for edge in memory[s]),
                                  key=lambda kv: kv[1])[0]
                history.append((s, chosen_edge))

                gs_copy.step(gs_copy.get_active_player(), chosen_edge['a'])
                s = gs_copy.get_unique_id()
                if s not in memory:
                    ExpertApprenticeAgent.create_node_in_memory(
                        memory, s,
                        gs_copy.get_available_actions(
                            gs_copy.get_active_player()),
                        gs_copy.get_active_player())

            # EXPANSION
            if not gs_copy.is_game_over():
                chosen_edge = choice(
                    list(
                        filter(lambda e: e['n'] == 0,
                               (edge for edge in memory[s]))))

                history.append((s, chosen_edge))
                gs_copy.step(gs_copy.get_active_player(), chosen_edge['a'])
                s = gs_copy.get_unique_id()
                if s not in memory:
                    ExpertApprenticeAgent.create_node_in_memory(
                        memory, s,
                        gs_copy.get_available_actions(
                            gs_copy.get_active_player()),
                        gs_copy.get_active_player())

            # SIMULATION
            while not gs_copy.is_game_over():
                gs_copy.step(
                    gs_copy.get_active_player(),
                    choice(
                        gs_copy.get_available_actions(
                            gs_copy.get_active_player())))

            scores = gs_copy.get_scores()
            # REMONTEE DU SCORE
            for (s, edge) in history:
                edge['n'] += 1
                edge['r'] += scores[edge['p']]
                for neighbour_edge in memory[s]:
                    neighbour_edge['np'] += 1

        target = np.zeros(gs.get_action_space_size())

        for edge in memory[root_hash]:
            target[edge['a']] = edge['n']

        target /= np.sum(target)

        self.states_buffer.append(gs.get_vectorized_state())
        self.actions_buffer.append(target)

        if len(self.states_buffer) > 200:
            self.apprentice_training_count += 1
            self.brain.fit(np.array(self.states_buffer),
                           np.array(self.actions_buffer))
            self.states_buffer.clear()
            self.actions_buffer.clear()

        if self.apprentice_training_count > self.apprentice_training_before_takeover:
            print('Apprentice is playing next round')

        return max((edge for edge in memory[root_hash]),
                   key=lambda e: e['n'])['a']
Esempio n. 11
0
    def act(self, gs: GameState) -> int:
        root_hash = gs.get_unique_id()
        memory = self.memory if self.keep_memory else dict()

        if root_hash not in memory:
            q_values = self.brain.predict(gs.get_vectorized_state())
            HalfAlphaZeroAgent.create_node_in_memory(
                memory, root_hash,
                gs.get_available_actions(gs.get_active_player()),
                gs.get_active_player(), q_values)

        for i in range(self.max_iteration):
            gs_copy = gs.clone()
            s = gs_copy.get_unique_id()
            history = []

            # SELECTION
            while not gs_copy.is_game_over() and all(
                (edge['n'] > 0 for edge in memory[s])):
                chosen_edge = max(((edge, HalfAlphaZeroAgent.ucb_1(edge))
                                   for edge in memory[s]),
                                  key=lambda kv: kv[1])[0]
                history.append((s, chosen_edge))

                gs_copy.step(gs_copy.get_active_player(), chosen_edge['a'])
                s = gs_copy.get_unique_id()
                if s not in memory:
                    q_values = self.brain.predict(
                        gs_copy.get_vectorized_state())
                    HalfAlphaZeroAgent.create_node_in_memory(
                        memory, s,
                        gs_copy.get_available_actions(
                            gs_copy.get_active_player()),
                        gs_copy.get_active_player(), q_values)

            # EXPANSION
            if not gs_copy.is_game_over():
                chosen_edge = choice(
                    list(
                        filter(lambda e: e['n'] == 0,
                               (edge for edge in memory[s]))))

                history.append((s, chosen_edge))
                gs_copy.step(gs_copy.get_active_player(), chosen_edge['a'])
                s = gs_copy.get_unique_id()
                if s not in memory:
                    q_values = self.brain.predict(
                        gs_copy.get_vectorized_state())
                    HalfAlphaZeroAgent.create_node_in_memory(
                        memory, s,
                        gs_copy.get_available_actions(
                            gs_copy.get_active_player()),
                        gs_copy.get_active_player(), q_values)

            scores = np.zeros(gs_copy.player_count())
            scores_set = np.zeros(gs_copy.player_count())
            # REMONTEE DU SCORE
            for (s, edge) in history:
                if scores_set[edge['p']] == 0:
                    scores_set[edge['p']] = 1.0
                    scores[edge['p']] = edge['q']

                edge['n'] += 1
                edge['r'] += scores[edge['p']]
                for neighbour_edge in memory[s]:
                    neighbour_edge['np'] += 1

        chosen_action = max((edge for edge in memory[root_hash]),
                            key=lambda e: e['n'])['a']

        if len(self.states_buffer) > 0:
            self.rewards_buffer.append(self.intermediate_reward)

        self.states_buffer.append(gs.get_vectorized_state())
        self.actions_buffer.append(
            to_categorical(chosen_action, gs.get_action_space_size()))
        self.intermediate_reward = 0.0

        return chosen_action