Esempio n. 1
0
    def __init__(self, application_id, parameters):
        self.logger = ScalingLog(
            "diff.controller.log", "controller.log", application_id)
        scaling_parameters = parameters["control_parameters"]
        self.application_id = application_id
        parameters.update({"app_id": application_id})
        # read scaling parameters
        self.check_interval = scaling_parameters["check_interval"]
        self.trigger_down = scaling_parameters["trigger_down"]
        self.trigger_up = scaling_parameters["trigger_up"]
        self.min_cap = scaling_parameters["min_rep"]
        self.max_cap = scaling_parameters["max_rep"]
        self.actuation_size = scaling_parameters["actuation_size"]
        # The actuator plugin name
        self.actuator_type = scaling_parameters["actuator"]
        # The metric source plugin name
        self.metric_source_type = scaling_parameters["metric_source"]

        # We use a lock here to prevent race conditions when stopping the
        # controller
        self.running = True
        self.running_lock = threading.RLock()

        # Gets a new metric source plugin using the given name
        metric_source = MetricSourceBuilder().get_metric_source(
            self.metric_source_type, parameters)
        # Gets a new actuator plugin using the given name
        actuator = ActuatorBuilder().get_actuator(self.actuator_type,
                                                  parameters=parameters)
        # The alarm here is responsible for deciding whether to scale up or
        # down, or even do nothing
        self.alarm = KubeJobs(actuator, metric_source,
                              self.trigger_down, self.trigger_up,
                              self.min_cap, self.max_cap, self.actuation_size,
                              application_id)
Esempio n. 2
0
class KubejobsController(Controller):

    def __init__(self, application_id, parameters):
        self.validate(parameters["control_parameters"])
        self.logger = ScalingLog(
            "diff.controller.log", "controller.log", application_id)
        self.application_id = application_id
        parameters.update({"app_id": application_id})
        # read scaling parameters
        self.check_interval = \
            parameters["control_parameters"]["check_interval"]
        # We use a lock here to prevent race conditions when stopping the
        # controller
        self.running = True
        self.running_lock = threading.RLock()

        # The alarm here is responsible for deciding whether to scale up or
        # down, or even do nothing
        self.alarm = KubeJobs(parameters)

    def start_application_scaling(self):
        run = True
        self.logger.log("Start to control resources")

        while run:
            self.logger.log("Monitoring application: %s" %
                            self.application_id)

            # Call the alarm to check the application
            self.alarm.check_application_state()

            # Wait some time
            time.sleep(float(self.check_interval))

            with self.running_lock:
                run = self.running

    def stop_application_scaling(self):
        with self.running_lock:
            self.running = False

    def status(self):
        return self.alarm.status()

    def validate(self, data):
        data_model = {
            "actuator": six.string_types,
            "check_interval": int,
            "metric_source": six.string_types,
            "schedule_strategy": six.string_types
        }

        for key in data_model:
            if (key not in data):
                raise ex.BadRequestException(
                    "Variable \"{}\" is missing".format(key))
            if (not isinstance(data[key], data_model[key])):
                raise ex.BadRequestException(
                    "\"{}\" has unexpected variable type: {}. Was expecting {}"
                    .format(key, type(data[key]), data_model[key]))
class KubejobsController(Controller):

    def __init__(self, application_id, parameters):
        self.logger = ScalingLog(
            "diff.controller.log", "controller.log", application_id)
        scaling_parameters = parameters["control_parameters"]
        self.application_id = application_id
        parameters.update({"app_id": application_id})
        # read scaling parameters
        self.check_interval = scaling_parameters["check_interval"]
        self.trigger_down = scaling_parameters["trigger_down"]
        self.trigger_up = scaling_parameters["trigger_up"]
        self.min_cap = scaling_parameters["min_rep"]
        self.max_cap = scaling_parameters["max_rep"]
        self.actuation_size = scaling_parameters["actuation_size"]
        # The actuator plugin name
        self.actuator_type = scaling_parameters["actuator"]
        # The metric source plugin name
        self.metric_source_type = scaling_parameters["metric_source"]

        # We use a lock here to prevent race conditions when stopping the controller
        self.running = True
        self.running_lock = threading.RLock()

        # Gets a new metric source plugin using the given name
        metric_source = MetricSourceBuilder().get_metric_source(
            self.metric_source_type, parameters)
        # Gets a new actuator plugin using the given name
        actuator = ActuatorBuilder().get_actuator(self.actuator_type, 
                                                  parameters=parameters)
        # The alarm here is responsible for deciding whether to scale up or down, or even do nothing
        self.alarm = KubeJobs(actuator, metric_source, 
                            self.trigger_down, self.trigger_up,
                            self.min_cap, self.max_cap, self.actuation_size,
                            application_id)

    def start_application_scaling(self):
        run = True
        print "Start to control resources"

        while run:
            self.logger.log("Monitoring application: %s" %
                            self.application_id)

            # Call the alarm to check the application
            self.alarm.check_application_state()

            # Wait some time
            time.sleep(float(self.check_interval))

            with self.running_lock:
                run = self.running

    def stop_application_scaling(self):
        with self.running_lock:
            self.running = False

    def status(self):
        return self.alarm.status()
    def setUp(self):
        application_id = "000001"

        self.parameters = {
            "control_parameters": {
                "metric_source": "redis",
                "schedule_strategy": "default",
                "actuator": 'nop',
                "trigger_down": 1,
                "trigger_up": 1,
                "min_rep": 2,
                "max_rep": 10,
                "check_interval": 1,
                "actuation_size": 3},
            "redis_ip": "192.168.0.0",
            "redis_port": "5000",
            "application_id": application_id
        }

        self.kubejobs1 = KubeJobs(self.parameters)
        self.kubejobs1.metric_source = \
            MetricSourceMock("2018-11-26T15:00:00.000Z", -2)
        self.kubejobs1.actuator = ActuatorMock()

        self.controller = KubejobsController(application_id, self.parameters)
        self.controller.alarm = self.kubejobs1
    def setUp(self):
        parameters = {
            "control_parameters": {
                "check_interval": 2,
                "trigger_down": 1,
                "trigger_up": 1,
                "min_rep": 2,
                "max_rep": 10,
                "actuation_size": 3,
                "actuator": "nop",
                "metric_source": "redis",
                "redis_ip": "192.168.0.0",
                "redis_port": "5000"
            },
            "redis_ip": "192.168.0.0",
            "redis_port": "5000"
        }

        application_id = "000001"

        metric_source_1 = MetricSourceMock("2018-11-26T15:00:00.000Z", -2)
        actuator = ActuatorMock()
        trigger_down = 1
        trigger_up = 1
        min_cap = 2
        max_cap = 10
        actuation_size = 3

        alarm = self.kubejobs1 = KubeJobs(actuator, metric_source_1,
                                          trigger_down, trigger_up, min_cap,
                                          max_cap, actuation_size,
                                          application_id)

        self.controller = KubejobsController(application_id, parameters)
        self.controller.alarm = alarm
Esempio n. 6
0
    def __init__(self, application_id, parameters):
        self.validate(parameters["control_parameters"])
        self.logger = ScalingLog(
            "diff.controller.log", "controller.log", application_id)
        self.application_id = application_id
        parameters.update({"app_id": application_id})
        # read scaling parameters
        self.check_interval = \
            parameters["control_parameters"]["check_interval"]
        # We use a lock here to prevent race conditions when stopping the
        # controller
        self.running = True
        self.running_lock = threading.RLock()

        # The alarm here is responsible for deciding whether to scale up or
        # down, or even do nothing
        self.alarm = KubeJobs(parameters)
    def setUp(self):
        metric_source_1 = MetricSourceMock("2018-11-26T15:00:00.000Z", -2)
        actuator = ActuatorMock()
        trigger_down = 1
        trigger_up = 1
        min_cap = 2
        max_cap = 10
        actuation_size = 3
        application_id_1 = "00001"

        application_id_2 = "00002"
        metric_source_2 = MetricSourceMock("2017-08-06T07:00:00.000Z", 0.0002)

        self.kubejobs1 = KubeJobs(actuator, metric_source_1, trigger_down,
                                  trigger_up, min_cap, max_cap, actuation_size,
                                  application_id_1)

        self.kubejobs2 = KubeJobs(actuator, metric_source_2, trigger_down,
                                  trigger_up, min_cap, max_cap, actuation_size,
                                  application_id_2)
    def setUp(self):
        data1 = {"metric_source": "redis",
                 "schedule_strategy": "default",
                 "actuator": 'nop',
                 "trigger_down": 0,
                 "trigger_up": 0,
                 "min_rep": 1,
                 "max_rep": 10,
                 "actuation_size": 1}

        data2 = {"metric_source": 'redis',
                 "schedule_strategy": "default",
                 "actuator": "nop",
                 "trigger_down": 0,
                 "trigger_up": 0,
                 "min_rep": 1,
                 "max_rep": 10,
                 "actuation_size": 1}

        self.kubejobs1 = KubeJobs({"redis_ip": "0.0.0.0",
                                   "redis_port": "2352",
                                   "application_id": "00001",
                                   "control_parameters": data1})

        self.kubejobs2 = KubeJobs({"redis_ip": "0.0.0.0",
                                   "redis_port": "2352",
                                   "application_id": "00002",
                                   "control_parameters": data2})

        self.kubejobs1.metric_source = \
            MetricSourceMock("2017-08-06T07:00:00.000Z", -2)
        self.kubejobs1.actuator = ActuatorMock()
        # self.kubejobs1.scheduler = SchedulerMock()
        self.kubejobs2.metric_source = \
            MetricSourceMock("2018-11-26T15:00:00.000Z", 0.0002)
        self.kubejobs2.actuator = ActuatorMock()
class TestKubeJobs(unittest.TestCase):

    """
    Set up KubeJobs alarm objects
    """

    def setUp(self):
        data1 = {"metric_source": "redis",
                 "schedule_strategy": "default",
                 "actuator": 'nop',
                 "trigger_down": 0,
                 "trigger_up": 0,
                 "min_rep": 1,
                 "max_rep": 10,
                 "actuation_size": 1}

        data2 = {"metric_source": 'redis',
                 "schedule_strategy": "default",
                 "actuator": "nop",
                 "trigger_down": 0,
                 "trigger_up": 0,
                 "min_rep": 1,
                 "max_rep": 10,
                 "actuation_size": 1}

        self.kubejobs1 = KubeJobs({"redis_ip": "0.0.0.0",
                                   "redis_port": "2352",
                                   "application_id": "00001",
                                   "control_parameters": data1})

        self.kubejobs2 = KubeJobs({"redis_ip": "0.0.0.0",
                                   "redis_port": "2352",
                                   "application_id": "00002",
                                   "control_parameters": data2})

        self.kubejobs1.metric_source = \
            MetricSourceMock("2017-08-06T07:00:00.000Z", -2)
        self.kubejobs1.actuator = ActuatorMock()
        # self.kubejobs1.scheduler = SchedulerMock()
        self.kubejobs2.metric_source = \
            MetricSourceMock("2018-11-26T15:00:00.000Z", 0.0002)
        self.kubejobs2.actuator = ActuatorMock()
        # self.kubejobs2.scheduler = SchedulerMock()

    """
    """

    def tearDown(self):
        pass

    """
    Test that if necessary, the number of replicas is increased, or not.
    """

    def test_check_application_state(self):

        initial_replicas1 = self.kubejobs1.actuator.get_number_of_replicas()
        self.kubejobs1.check_application_state()
        final_replicas1 = self.kubejobs1.actuator.get_number_of_replicas()

        self.assertTrue(final_replicas1 > initial_replicas1)

        initial_replicas2 = self.kubejobs2.actuator.get_number_of_replicas()
        self.kubejobs2.check_application_state()
        final_replicas2 = self.kubejobs2.actuator.get_number_of_replicas()

        self.assertTrue(final_replicas2 == initial_replicas2)

    def test_scale(self):
        self.kubejobs1.actuator.adjust_resources(4)
        self.assertEqual(self.kubejobs1.actuator.get_number_of_replicas(), 4)

        self.kubejobs1.actuator.\
            adjust_resources(self.kubejobs1.actuator.
                             get_number_of_replicas() - 2)
        self.assertEqual(self.kubejobs1.actuator.get_number_of_replicas(), 2)

        self.kubejobs1.actuator.\
            adjust_resources(self.kubejobs1.actuator.
                             get_number_of_replicas() + 8)

        self.assertEqual(self.kubejobs1.actuator.get_number_of_replicas(), 10)

    """
    Test that the function _get_progress_error returns the progress
    error correct.
    """

    def test_get_progress_error(self):
        self.assertEqual(self.kubejobs2._get_progress_error("00001"),
                         (datetime.strptime("2018-11-26T15:00:00.000Z",
                                            '%Y-%m-%dT%H:%M:%S.%fZ'), 0.0002))

        self.assertEqual(self.kubejobs1._get_progress_error("00002"),
                         (datetime.strptime("2017-08-06T07:00:00.000Z",
                                            '%Y-%m-%dT%H:%M:%S.%fZ'), -2))

    """
    Test that the function _check_measurements_are_new works correctly.
    """

    def test_check_measurements_are_new(self):

        self.assertFalse(self.kubejobs1._check_measurements_are_new(
            datetime.strptime("0001-01-01T00:00:00.0Z",
                              '%Y-%m-%dT%H:%M:%S.%fZ')))

        self.assertTrue(self.kubejobs1._check_measurements_are_new(
            datetime.strptime("2017-08-06T07:00:00.000Z",
                              '%Y-%m-%dT%H:%M:%S.%fZ')))

    """
    Test that the status returned is correct.
    """

    def test_status(self):
        self.kubejobs1.metric_source = MetricSourceMock(
            "2018-11-26T15:00:00.000Z", 0.0001)

        initial_state1 = ""
        self.assertEqual(self.kubejobs1.status(), initial_state1)

        final_state1 = "Progress error-[%s]-%f" % \
            self.kubejobs1._get_progress_error("00001")
        self.kubejobs1.check_application_state()
        self.assertEqual(self.kubejobs1.status(), final_state1)

        self.kubejobs2.metric_source = MetricSourceMock(
            "0001-01-01T00:00:00.0Z", 0.0002)

        initial_state2 = ""
        self.assertEqual(self.kubejobs2.status(), initial_state2)

        final_state2 = "Progress error-[%s]-%f" % \
            self.kubejobs2._get_progress_error("00002") \
            + " Could not acquire more recent metrics"
        self.kubejobs2.check_application_state()
        self.assertEqual(self.kubejobs2.status(), final_state2)
Esempio n. 10
0
class TestKubeJobs(unittest.TestCase):
    """
    Set up KubeJobs alarm objects
    """
    def setUp(self):
        metric_source_1 = MetricSourceMock("2018-11-26T15:00:00.000Z", -2)
        actuator = ActuatorMock()
        trigger_down = 1
        trigger_up = 1
        min_cap = 2
        max_cap = 10
        actuation_size = 3
        application_id_1 = "00001"

        application_id_2 = "00002"
        metric_source_2 = MetricSourceMock("2017-08-06T07:00:00.000Z", 0.0002)

        self.kubejobs1 = KubeJobs(actuator, metric_source_1, trigger_down,
                                  trigger_up, min_cap, max_cap, actuation_size,
                                  application_id_1)

        self.kubejobs2 = KubeJobs(actuator, metric_source_2, trigger_down,
                                  trigger_up, min_cap, max_cap, actuation_size,
                                  application_id_2)

    """
    """

    def tearDown(self):
        pass

    """
    Test that if necessary, the number of replicas is increased, or not.
    """

    def test_check_application_state(self):

        initial_replicas1 = self.kubejobs1.actuator.get_number_of_replicas()
        self.kubejobs1.check_application_state()
        final_replicas1 = self.kubejobs1.actuator.get_number_of_replicas()

        self.assertTrue(final_replicas1 > initial_replicas1)

        initial_replicas2 = self.kubejobs2.actuator.get_number_of_replicas()
        self.kubejobs2.check_application_state()
        final_replicas2 = self.kubejobs2.actuator.get_number_of_replicas()

        self.assertTrue(final_replicas2 == initial_replicas2)

    """
    Test that the scale down works, decreasing the number of replicas.
    """

    def test_scale_down(self):
        self.kubejobs1.actuator.replicas = 10

        self.kubejobs1._scale_down(2)
        self.assertEqual(self.kubejobs1.actuator.get_number_of_replicas(), 7)

        self.kubejobs1._scale_down(2)
        self.assertEqual(self.kubejobs1.actuator.get_number_of_replicas(), 4)

        self.kubejobs1._scale_down(2)
        self.assertEqual(self.kubejobs1.actuator.get_number_of_replicas(), 2)

    """
    Test that the scale down works, increasing the number of replicas.
    """

    def test_scale_up(self):
        self.kubejobs1._scale_up(-2)
        self.assertEqual(self.kubejobs1.actuator.get_number_of_replicas(), 4)

        self.kubejobs1._scale_up(-2)
        self.assertEqual(self.kubejobs1.actuator.get_number_of_replicas(), 7)

        self.kubejobs1._scale_up(-2)
        self.assertEqual(self.kubejobs1.actuator.get_number_of_replicas(), 10)

    """
    Test that the function _get_progress_error returns the progress
    error correct.
    """

    def test_get_progress_error(self):
        self.assertEqual(self.kubejobs1._get_progress_error("00001"),
                         (datetime.strptime("2018-11-26T15:00:00.000Z",
                                            '%Y-%m-%dT%H:%M:%S.%fZ'), -2))

        self.assertEqual(self.kubejobs2._get_progress_error("00002"),
                         (datetime.strptime("2017-08-06T07:00:00.000Z",
                                            '%Y-%m-%dT%H:%M:%S.%fZ'), 0.0002))

    """
    Test that the function _check_measurements_are_new works correctly.
    """

    def test_check_measurements_are_new(self):

        self.assertFalse(
            self.kubejobs1._check_measurements_are_new(
                datetime.strptime("0001-01-01T00:00:00.0Z",
                                  '%Y-%m-%dT%H:%M:%S.%fZ')))

        self.assertTrue(
            self.kubejobs1._check_measurements_are_new(
                datetime.strptime("2017-08-06T07:00:00.000Z",
                                  '%Y-%m-%dT%H:%M:%S.%fZ')))

    """
    Test that the status returned is correct.
    """

    def test_status(self):
        self.kubejobs1.metric_source = MetricSourceMock(
            "2018-11-26T15:00:00.000Z", 0.0001)
        initial_state1 = ""
        final_state1 = "Progress error-[%s]-%f" % \
            self.kubejobs1._get_progress_error("00001")

        self.assertEqual(self.kubejobs1.status(), initial_state1)
        self.kubejobs1.check_application_state()
        self.assertEqual(self.kubejobs1.status(), final_state1)

        self.kubejobs2.metric_source = MetricSourceMock(
            "0001-01-01T00:00:00.0Z", 0.0002)
        initial_state2 = ""
        final_state2 = "Progress error-[%s]-%f" % \
            self.kubejobs2._get_progress_error("00002") \
            + " Could not acquire more recent metrics"

        self.assertEqual(self.kubejobs2.status(), initial_state2)
        self.kubejobs2.check_application_state()
        self.assertEqual(self.kubejobs2.status(), final_state2)