def initialization(self): self.mode = self.Mode.AVOIDOBSTACLES self.camera = self.getCamera('camera') self.camera.enable(4 * self.timeStep) width = Camera.getWidth(self.camera) height = Camera.getHeight(self.camera) imagecameraki = Camera.getImage(self.camera) i = width / 3 j = height / 2 k = height / 4 for( l < 2 * i):
leftSpeed -= 0.5 * MAX_SPEED rightSpeed += 0.5 * MAX_SPEED print("front_obstacle") elif left_obstacle: leftSpeed -= 0.5 * MAX_SPEED rightSpeed += 0.5 * MAX_SPEED print("left_obstacle") elif right_obstacle: leftSpeed += 0.5 * MAX_SPEED rightSpeed -= 0.5 * MAX_SPEED print("right_obstacle") # set up the motor speeds at x% of the MAX_SPEED. leftMotorFront.setVelocity(leftSpeed) rightMotorFront.setVelocity(rightSpeed) leftMotorBack.setVelocity(leftSpeed) rightMotorBack.setVelocity(rightSpeed) Camera.getImage(kinectColor) Camera.saveImage(kinectColor, 'color.png', 1) RangeFinder.getRangeImage(kinectDepth) RangeFinder.saveImage(kinectDepth, 'depth.png', 1) frameColor = cv.imread('color.png') frameDepth = cv.imread('depth.png') cv.imshow("Color", frameColor) cv.imshow("Depth", frameDepth) cv.waitKey(10)
basicTimeStep = int(robot.getBasicTimeStep()) # print(robot.getDevice("camera")) camera1=robot.getCamera("Camera") print(camera1) # camera= Camera(camera1) camera= Camera('Camera') # print(robot.getCamera('Camera')) # camera.wb_camera_enable() mTimeStep=basicTimeStep camera.enable(int(mTimeStep)) camera.getSamplingPeriod() # width=camera.getWidth() # height=camera.getHeight() firstimage=camera.getImage() ori_width = int(4 * 160) # 原始图像640x480 ori_height = int(3 * 160) r_width = int(4 * 20) # 处理图像时缩小为80x60,加快处理速度,谨慎修改! r_height = int(3 * 20) color_range = {'yellow_door': [(10, 43, 46), (34, 255, 255)], 'red_floor1': [(0, 43, 46), (10, 255, 255)], 'red_floor2': [(156, 43, 46), (180, 255, 255)], 'green_bridge': [(35, 43, 20), (100, 255, 255)], 'yellow_hole': [(10, 70, 46), (34, 255, 255)], 'black_hole': [(0, 0, 0), (180, 255, 80)], 'black_gap': [(0, 0, 0), (180, 255, 100)], 'black_dir': [(0, 0, 0), (180, 255, 46)], 'blue': [(110, 43, 46), (124, 255, 255)], 'black_door': [(0, 0, 0), (180, 255, 46)], }
camera = driver.getCamera("camera") Camera.enable(camera, timestep) lms291 = driver.getLidar("Sick LMS 291") Lidar.enable(lms291, timestep) lms291_yatay = Lidar.getHorizontalResolution(lms291) fig = plt.figure(figsize=(3, 3)) # Main loop: # - perform simulation steps until Webots is stopping the controller while driver.step() != -1: Camera.getImage(camera) Camera.saveImage(camera, "camera.png", 1) frame = cv2.imread("camera.png") #cv2.imshow("Camera",frame) #cv2.waitKey(1) lms291_deger = [] lms291_deger = Lidar.getRangeImage(lms291) if plot == 10: y = lms291_deger x = np.linspace(math.pi, 0, np.size(y)) plt.polar(x, y) plt.pause(0.00001) plt.clf() plot = 0
robot.getSupervisor() basicTimeStep = int(robot.getBasicTimeStep()) # print(robot.getDevice("camera")) camera1 = robot.getCamera("Camera") print(camera1) # camera= Camera(camera1) camera = Camera('Camera') # print(robot.getCamera('Camera')) # camera.wb_camera_enable() mTimeStep = basicTimeStep print(camera.enable(int(mTimeStep))) print(camera.getSamplingPeriod()) print(camera.getWidth()) print(camera.getHeight()) image = camera.getImage() # print(image) if image == None: print("none") # print(image.size()) # cameradata = cv2.VideoCapture('Camera') camera.saveImage('/home/luyi/webots.png', 100) # print(len(cap)) # cv2.imshow("cap",cap) # print(image[2][3][0]) # for x in range(0,camera.getWidth()): # for y in range(0,camera.getHeight()): # print(camera.getSamplingPeriod()) # red = image[x][y][0] # green = image[x][y][1] # blue = image[x][y][2]
driver.setSteeringAngle(0.0) # volante (giro) elif cont > 1000 and cont < 1500: driver.setCruisingSpeed(speedBrake) driver.setBrakeIntensity(1.0) # intensidade (0.0 a 1.0) elif cont > 1500 and cont < 2500: driver.setCruisingSpeed(-speedFoward) # acelerador (velocidade) driver.setSteeringAngle(0.0) # volante (giro) elif cont > 2500: cont = 0 # print('speed (km/h) %0.2f' % driver.getCurrentSpeed()) cont += 1 # ler a camera Camera.getImage(cameraRGB) Camera.saveImage(cameraRGB, 'color.png', 1) frameColor = cv.imread('color.png') cv.imshow('color', frameColor) cv.waitKey(1) # ler o Lidar lms291_values = [] lms291_values = Lidar.getRangeImage(lms291) # plotar o mapa if plot == 10: y = lms291_values x = np.linspace(math.pi, 0, np.size(y)) plt.polar(x, y) plt.pause(0.0001)
motors = [] motorNames = ['left motor', 'right motor'] for i in range(2): motors.append(robot.getMotor(motorNames[i])) motors[i].setPosition(float('inf')) motors[i].setVelocity(0.0) motors[i].setAcceleration(25) camera = Camera('camera') camera.enable(int(robot.getBasicTimeStep())) SPEED = 2 while robot.step(TIME_STEP) != -1: leftSpeed = 0.0 rightSpeed = 0.0 #get image and process it image = camera.getImage() leftSum = 0 rightSum = 0 cameraData = camera.getImage() for x in range(0, camera.getWidth()): for y in range(int(camera.getHeight() * 0.9), camera.getHeight()): gray = Camera.imageGetGray(cameraData, camera.getWidth(), x, y) if x < camera.getWidth() / 2: leftSum += gray else: rightSum += gray if leftSum > rightSum + 1000: leftSpeed = SPEED * (1 - 0.8 * (leftSum - rightSum) / 460000) rightSpeed = SPEED * (1 - 0.6 * (leftSum - rightSum) / 460000)
class SupervisorController: def __init__(self, timesteps=32, gamma=0.99, epsilon=1.0, epsilon_min=0.01, epsilon_log_decay=0.99, alpha=0.01): self.supervisor = Supervisor() self.robot_node = self.supervisor.getFromDef("MY_BOT") if self.robot_node is None: sys.stderr.write( "No DEF MY_ROBOT node found in the current world file\n") sys.exit(1) self.trans_field = self.robot_node.getField("translation") self.rot_field = self.robot_node.getField("rotation") self.timestep = timesteps self.camera = Camera('camera') self.camera.enable(self.timestep) self.init_image = self.get_image() self.timestep = timesteps self.receiver = Receiver('receiver') self.receiver.enable(self.timestep) self.emitter = Emitter('emitter') self.memory = deque(maxlen=50000) self.batch_size = 128 self.alpha = alpha self.gamma = gamma self.epsion_init = epsilon self.epsilon_min = epsilon_min self.epsilon_decay = epsilon_log_decay self.pre_state = self.init_image self.pre_action = -1 self.pre_go_straight = False self.reward = 0 self.step = 0 self.max_step = 200 self.file = None # interactive self.feedbackProbability = 0 self.feedbackAccuracy = 1 self.PPR = False self.feedbackTotal = 0 self.feedbackAmount = 0 self.init_model() self.init_parametter() def init_model(self): self.main_network = self.build_network() self.target_network = self.build_network() self.agent_network = self.build_network() self.generalise_model = self.init_gereral_model() self.pca_model = self.init_pca_model() def init_parametter(self): self.epsilon = self.epsion_init self.episode = 0 self.policy_reuse = PPR() def init_gereral_model(self): n_clusters = 2 return KMeans(n_clusters=n_clusters, n_init=10) def init_pca_model(self): n_component = 100 return PCA(n_components=100, random_state=22) def get_image(self): image = self.camera.getImage() if image is None: empty_image = np.zeros((64, 64, 3)) return Image.fromarray(empty_image.astype(np.uint8)) else: return self.toPIL(image) def toPIL(self, bytes_data): imgPIL = Image.frombytes('RGBA', (64, 64), bytes_data) imgPIL = imgPIL.convert('RGB') return imgPIL def image_process(self, PIL): array = np.array(PIL) array = array / 255 return np.reshape(array, list((1, ) + array.shape)) def save_image(self, PIL, ep, step): PIL.save(resultsFolder + 'images/' + str(ep) + '_' + str(step) + '.png') def update_target(self): self.target_network.set_weights(self.main_network.get_weights()) def observation_space(self): return self.observation_space def get_epsilon(self, t): return max( self.epsilon_min, min(self.epsilon, 1.0 - math.log10((t + 1) * self.epsilon_decay))) def build_network(self): model = Sequential() model.add(Input(shape=(64, 64, 3))) model.add(Conv2D(4, kernel_size=8, activation='linear', padding='same')) model.add(MaxPooling2D((2, 2), padding='same')) model.add(Conv2D(8, kernel_size=4, activation='linear', padding='same')) model.add(MaxPooling2D((2, 2), padding='same')) model.add( Conv2D(16, kernel_size=2, activation='linear', padding='same')) model.add(MaxPooling2D((2, 2), padding='same')) model.add(Flatten()) model.add(Dense(256, activation='linear')) model.add(Dense(len(self.action_space()), activation='softmax')) opt = Nadam(learning_rate=self.alpha) model.compile(loss='mse', optimizer=opt) return model def save_reward(self, file, rewards, totals, feedbacks): pairs = {'Reward': rewards, 'Total': totals, 'Feedback': feedbacks} data_df = pd.DataFrame.from_dict(pairs) data_df.to_csv(file) def save_model(self, file): self.main_network.save_weights(file) self.save_generalise_model(file) def save_generalise_model(self, filename): obs = [s[5] for s in self.memory] with open(filename + 'gel', "wb") as f: pickle.dump(self.generalise_model, f) with open(filename + 'pca', "wb") as f: pickle.dump(self.pca_model, f) with open(filename + 'state', "wb") as f_: pickle.dump(obs, f_) def load_generalise_model(self, filename): with open(filename + 'gel', "rb") as f: print(filename + 'gel') self.generalise_model = pickle.load(f) with open(filename + 'pca', "rb") as f: self.pca_model = pickle.load(f) def load_model(self, file): self.agent_network.load_weights(file + '.model') self.load_generalise_model(file + '.model') self.update_target() def finalise(self, rewards, totals, feedbacks, ppr): file = self.file + '_' + str(self.feedbackProbability) + '_' + str( self.feedbackAccuracy) + str(ppr) self.save_reward(file + '.csv', rewards, totals, feedbacks) self.save_model(file + '.model') def get_group(self, state): # nx, ny, nz = state[0].shape # state = state.reshape(nx * ny * nz) # state = [state] # new_state = self.pca_model.transform(state) nx, ny, nz = state[0].shape image_grayscale = state[0].mean(axis=2).astype(np.float32) image_grayscale = image_grayscale.reshape(nx * ny) image_grayscale = [image_grayscale] return self.generalise_model.predict(image_grayscale)[0] def memorize(self, state, action, reward, next_state, done, obs): self.memory.append((state, action, reward, next_state, done, obs)) def updatePolicy(self, batchSize=0): if batchSize == 0: batchSize = self.batch_size if len(self.memory) < batchSize: self.trainNetwork(len(self.memory)) return # do nothing self.trainNetwork(batchSize) return def trainNetwork(self, batch_size): # sample a mini batch of transition from the replay buffer minibatch = random.sample(self.memory, batch_size) states = [] targets = [] for state, action, reward, next_state, done, obs in minibatch: state_processed = self.image_process(state) next_state_processed = self.image_process(next_state) if not done: target = self.target_network.predict(next_state_processed) target_Q = (reward + self.gamma * np.max(target[0])) else: target_Q = reward # compute the Q value using the main network Q_values = self.main_network.predict(state_processed) Q_values[0][action] = target_Q states.append(state_processed[0]) targets.append(Q_values[0]) # train the main network states = np.array(states) targets = np.array(targets) self.main_network.fit(states, targets, epochs=1, verbose=0) def normal_action(self, state, epsilon=0.1): # exploration if np.random.random() <= epsilon: action = self.random_action() # PPR: if self.PPR: group = self.get_group(state) redoAction, rate = self.policy_reuse.get(group) # print(group, rate) if (np.random.rand() < rate): action = redoAction # end PPR: # exploitation else: action = np.argmax(self.main_network.predict(state)) return action def action_space(self): """ 0: left 1: right 2: straight """ return [0, 1, 2] def random_action(self): # if np.random.rand() < 0.5: # return 2 # else: # return random.choice([0, 1]) return random.choice(self.action_space()) def propose_action(self, obs): return def has_obstacle(self, leftValue, rightValue): return leftValue > 500 or rightValue > 500 def back_to_begin(self): INITIAL = [0, 0, 0] self.trans_field.setSFVec3f(INITIAL) ROT_INITIAL = [0, 1, 0, 3.2] self.rot_field.setSFRotation(ROT_INITIAL) def reset(self): self.pre_state = self.init_image self.pre_action = -1 self.pre_go_straight = False self.reward = 0 self.step = 0 self.finish = False self.feedbackTotal = 0 self.feedbackAmount = 0 self.back_to_begin() self.send_to_robot('reset', None) def propose_new_action(self, obs): left, right = obs obstacle_flag = self.has_obstacle(left, right) pre_state_processed = self.image_process(self.pre_state) if not obstacle_flag: action = 2 self.pre_action = action self.pre_go_straight = True else: # propose new action ------------------ if self.PPR: self.policy_reuse.step() if np.random.rand() < self.feedbackProbability: # get advice trueAction = np.argmax( self.agent_network.predict(pre_state_processed)) # PPR: if self.PPR: group = self.get_group(pre_state_processed) self.policy_reuse.add(group, trueAction) # end PPR: if np.random.rand() < self.feedbackAccuracy: action = trueAction else: while True: action = self.random_action() if action != trueAction: break self.feedbackAmount += 1 else: action = self.normal_action(pre_state_processed, self.epsilon) self.pre_go_straight = False self.feedbackTotal += 1 self.pre_action = action return action def execute(self, obs, reward, done, info): state = self.get_image() if self.pre_action != -1: self.reward += reward if self.step == self.max_step or done: if done: self.save_image(state, self.episode, self.step) self.save_image(self.pre_state, self.episode, self.step - 1) self.memorize(self.pre_state, self.pre_action, reward, state, done, obs) self.updatePolicy(self.step) self.update_target() if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay self.episode += 1 self.finish = True return if info: self.back_to_begin() if not self.pre_go_straight: self.memorize(self.pre_state, self.pre_action, reward, state, done, obs) self.pre_state = state return def receive_handle(self): send_message, send_data = None, None if self.receiver.getQueueLength() > 0: data = self.receiver.getData() message, d = pickle.loads(data) if message == 'step_done': obs, r, d, i, s = d # print(s, self.step - 1, self.pre_action, r) # check synchronize self.execute(obs, r, d, i) if not self.finish: action = self.propose_new_action(obs) self.send_to_robot('step', action) self.step += 1 if message == 'reset_done': obs = d self.execute(obs, 0, False, False) action = self.propose_new_action(obs) self.send_to_robot('step', action) if message == 'obstacle': self.back_to_begin() self.receiver.nextPacket() return def send_to_robot(self, message, data): data = message, data, self.step dataSerialized = pickle.dumps(data) self.emitter.send(dataSerialized) def start(self, max_step, episodes, file, feedbackP=0, feedbackA=1, PPR=False): self.file = file self.max_step = max_step self.feedbackProbability = feedbackP self.feedbackAccuracy = feedbackA self.PPR = PPR rewards = [] feedbackTotal = [] feedbackAmount = [] self.init_parametter() for i in range(episodes): self.reset() self.episode = i while self.supervisor.step( self.timestep) != -1 and not self.finish: self.receive_handle() print(i, self.reward, self.feedbackTotal, self.feedbackAmount) rewards.append(self.reward) feedbackTotal.append(self.feedbackTotal) feedbackAmount.append(self.feedbackAmount) self.finalise(rewards, feedbackTotal, feedbackAmount, PPR)
# cameraFront = Camera("cameraFront") cameraTop = Camera("cameraTop") display = Display("displayTop") display.attachCamera(cameraTop) keyboard = Keyboard() # cameraFront.enable(32) cameraTop.enable(32) keyboard.enable(32) while car.step() != -1: display.setColor(0x000000) display.setAlpha(0.0) display.fillRectangle(0, 0, display.getWidth(), display.getHeight()) img = cameraTop.getImage() image = np.frombuffer(img, np.uint8).reshape( (cameraTop.getHeight(), cameraTop.getWidth(), 4)) # cv2.imwrite("img.png", image) gray = cv2.cvtColor(np.float32(image), cv2.COLOR_RGB2GRAY) #--- vira a imagem da camera em 90 graus #gray270 = np.rot90(gray, 3) #grayFlip = cv2.flip(gray270, 1) #cv2.imwrite("grayflip.jpeg", grayFlip) #--- gera o blur na imagem da camera kernel_size = 5 blurGray = cv2.GaussianBlur(gray, (kernel_size, kernel_size), 0)