def __init__(self): self.conv_layer1 = ConvLayer(7, 3, 64, stride=2, padding='SAME') self.batch_norm1 = BatchNormLayer(64) self.relu_layer1 = ReluLayer() self.max_pool1 = MaxPoolLayer(3) self.conv_block1 = ConvBlock(64, mo=[64, 64, 256], stride=1) self.layers = [ self.conv_layer1, self.batch_norm1, self.relu_layer1, self.max_pool1, self.conv_block1 ]
def __init__(self): #layers for the partial resnet self.layers = [ ConvLayer(d = 7,mi=3,mo=64,stride = 2,padding='SAME'), BatchNormLayer(64), ReluLayer(), MaxPoolLayer(3), ConvBlock(mi = 64,fm_sizes = [64,64,256],stride = 1) ] self.input_1 = tf.placeholder(dtype = tf.float32,shape = [None,224,224,3]) self.output1 = self.forward(self.input_1)
class PartialResNet(object): def __init__(self): self.conv_layer1 = ConvLayer(7, 3, 64, stride=2, padding='SAME') self.batch_norm1 = BatchNormLayer(64) self.relu_layer1 = ReluLayer() self.max_pool1 = MaxPoolLayer(3) self.conv_block1 = ConvBlock(64, mo=[64, 64, 256], stride=1) self.layers = [ self.conv_layer1, self.batch_norm1, self.relu_layer1, self.max_pool1, self.conv_block1 ] def forward(self, X): FX = self.conv_layer1.forward(X) FX = self.batch_norm1.forward(FX) FX = self.relu_layer1.forward(FX) FX = self.max_pool1.forward(FX) FX = self.conv_block1.forward(FX) return FX def get_params(self): all_params = [] all_params += self.conv_layer1.get_params() all_params += self.batch_norm1.get_params() all_params += self.conv_block1.get_params() return all_params def set_session(self, session): self.session = session self.conv_layer1.session = session self.batch_norm1.session = session self.conv_block1.set_session(session) def copyFromKerasLayers(self, layers): self.conv_layer1.copyFromKerasLayers(layers[1]) self.batch_norm1.copyFromKerasLayers(layers[2]) self.conv_block1.copyFromKerasLayers(layers[5:])
def __init__(self): #1st block self.conv1 = ConvLayer(7, 3, 64, stride=2, padding='SAME') self.bn1 = BatchNormLayer(64) self.activation1 = ReluLayer() self.max_pool1 = MaxPoolLayer(3, stride=2) #2nd Block self.conv_block2a = ConvBlock(64, [64, 64, 256], stride=1) self.identity_block2b = IdentityBlock(256, [64, 64, 256]) self.identity_block2c = IdentityBlock(256, [64, 64, 256]) #3rd Block self.conv_block3a = ConvBlock(256, [128, 128, 512], stride=2) self.identity_block3b = IdentityBlock(512, [128, 128, 512]) self.identity_block3c = IdentityBlock(512, [128, 128, 512]) self.identity_block3d = IdentityBlock(512, [128, 128, 512]) #4th Block self.conv_block4a = ConvBlock(512, [256, 256, 1024], stride=2) self.identity_block4b = IdentityBlock(1024, [256, 256, 1024]) self.identity_block4c = IdentityBlock(1024, [256, 256, 1024]) self.identity_block4d = IdentityBlock(1024, [256, 256, 1024]) self.identity_block4e = IdentityBlock(1024, [256, 256, 1024]) self.identity_block4f = IdentityBlock(1024, [256, 256, 1024]) #5th Block self.conv_block5a = ConvBlock(1024, [512, 512, 2048], stride=2) self.identity_block5b = IdentityBlock(2048, [512, 512, 2048]) self.identity_block5c = IdentityBlock(2048, [512, 512, 2048]) #Final block self.avg_poolf = AvgPoolLayer(7, stride=7) self.flattenf = FlattenLayer() self.dense_layerf = DenseLayer(2048, 1000)
def __init__(self,mi,mo): #mi => input no of filters #mo => output filters for each layer self.f = tf.nn.relu self.session = None #define layers self.conv1 = ConvLayer(1,mi,mo[0],stride = 1,padding = 'VALID') self.bn1 = BatchNormLayer(mo[0]) self.conv2 = ConvLayer(3,mo[0],mo[1],stride = 1,padding = 'SAME') self.bn2 = BatchNormLayer(mo[1]) self.conv3 = ConvLayer(1,mo[1],mo[2],stride = 1,padding = 'VALID') self.bn3 = BatchNormLayer(mo[2]) self.layers = [self.conv1,self.bn1, self.conv2,self.bn2, self.conv3,self.bn3]
class TfResNet(object): def __init__(self): #1st block self.conv1 = ConvLayer(7, 3, 64, stride=2, padding='SAME') self.bn1 = BatchNormLayer(64) self.activation1 = ReluLayer() self.max_pool1 = MaxPoolLayer(3, stride=2) #2nd Block self.conv_block2a = ConvBlock(64, [64, 64, 256], stride=1) self.identity_block2b = IdentityBlock(256, [64, 64, 256]) self.identity_block2c = IdentityBlock(256, [64, 64, 256]) #3rd Block self.conv_block3a = ConvBlock(256, [128, 128, 512], stride=2) self.identity_block3b = IdentityBlock(512, [128, 128, 512]) self.identity_block3c = IdentityBlock(512, [128, 128, 512]) self.identity_block3d = IdentityBlock(512, [128, 128, 512]) #4th Block self.conv_block4a = ConvBlock(512, [256, 256, 1024], stride=2) self.identity_block4b = IdentityBlock(1024, [256, 256, 1024]) self.identity_block4c = IdentityBlock(1024, [256, 256, 1024]) self.identity_block4d = IdentityBlock(1024, [256, 256, 1024]) self.identity_block4e = IdentityBlock(1024, [256, 256, 1024]) self.identity_block4f = IdentityBlock(1024, [256, 256, 1024]) #5th Block self.conv_block5a = ConvBlock(1024, [512, 512, 2048], stride=2) self.identity_block5b = IdentityBlock(2048, [512, 512, 2048]) self.identity_block5c = IdentityBlock(2048, [512, 512, 2048]) #Final block self.avg_poolf = AvgPoolLayer(7, stride=7) self.flattenf = FlattenLayer() self.dense_layerf = DenseLayer(2048, 1000) def forward(self, X): FX = self.conv1.forward(X) FX = self.bn1.forward(FX) FX = self.activation1.forward(FX) FX = self.max_pool1.forward(FX) FX = self.conv_block2a.forward(FX) FX = self.identity_block2b.forward(FX) FX = self.identity_block2c.forward(FX) FX = self.conv_block3a.forward(FX) FX = self.identity_block3b.forward(FX) FX = self.identity_block3c.forward(FX) FX = self.identity_block3d.forward(FX) FX = self.conv_block4a.forward(FX) FX = self.identity_block4b.forward(FX) FX = self.identity_block4c.forward(FX) FX = self.identity_block4d.forward(FX) FX = self.identity_block4e.forward(FX) FX = self.identity_block4f.forward(FX) FX = self.conv_block5a.forward(FX) FX = self.identity_block5b.forward(FX) FX = self.identity_block5c.forward(FX) FX = self.avg_poolf.forward(FX) FX = self.flattenf.forward(FX) FX = self.dense_layerf.forward(FX) return FX def get_params(self): params = [] params += self.conv1.get_params() params += self.bn1.get_params() params += self.conv_block2a.get_params() params += self.identity_block2b.get_params() params += self.identity_block2c.get_params() params += self.conv_block3a.get_params() params += self.identity_block3b.get_params() params += self.identity_block3c.get_params() params += self.identity_block3d.get_params() params += self.conv_block4a.get_params() params += self.identity_block4b.get_params() params += self.identity_block4c.get_params() params += self.identity_block4d.get_params() params += self.identity_block4e.get_params() params += self.identity_block4f.get_params() params += self.conv_block5a.get_params() params += self.identity_block5b.get_params() params += self.identity_block5c.get_params() params += self.dense_layerf.get_params() return params def set_session(self, session): self.conv1.session = session self.bn1.session = session self.conv_block2a.set_session(session) self.identity_block2b.set_session(session) self.identity_block2c.set_session(session) self.conv_block3a.set_session(session) self.identity_block3b.set_session(session) self.identity_block3c.set_session(session) self.identity_block3d.set_session(session) self.conv_block4a.set_session(session) self.identity_block4b.set_session(session) self.identity_block4c.set_session(session) self.identity_block4d.set_session(session) self.identity_block4e.set_session(session) self.identity_block4f.set_session(session) self.conv_block5a.set_session(session) self.identity_block5b.set_session(session) self.identity_block5c.set_session(session) self.dense_layerf.session = session def copyFromKerasLayers(self, layers): self.conv1.copyFromKerasLayers(layers[1]) self.bn1.copyFromKerasLayers(layers[2]) self.conv_block2a.copyFromKerasLayers(layers[5:17]) self.identity_block2b.copyFromKerasLayers(layers[17:27]) self.identity_block2c.copyFromKerasLayers(layers[27:37]) self.conv_block3a.copyFromKerasLayers(layers[37:49]) self.identity_block3b.copyFromKerasLayers(layers[49:59]) self.identity_block3c.copyFromKerasLayers(layers[59:69]) self.identity_block3d.copyFromKerasLayers(layers[69:79]) self.conv_block4a.copyFromKerasLayers(layers[79:91]) self.identity_block4b.copyFromKerasLayers(layers[91:101]) self.identity_block4c.copyFromKerasLayers(layers[101:111]) self.identity_block4d.copyFromKerasLayers(layers[111:121]) self.identity_block4e.copyFromKerasLayers(layers[121:131]) self.identity_block4f.copyFromKerasLayers(layers[131:141]) self.conv_block5a.copyFromKerasLayers(layers[141:153]) self.identity_block5b.copyFromKerasLayers(layers[153:163]) self.identity_block5c.copyFromKerasLayers(layers[163:173]) self.dense_layerf.copyFromKerasLayers(layers[175])
class IdentityBlock(object): # X -> CL -> BN -> relu -> CL -> BN -> relu -> CL -> BN_final # return relu(BN_final + X) def __init__(self,mi,mo): #mi => input no of filters #mo => output filters for each layer self.f = tf.nn.relu self.session = None #define layers self.conv1 = ConvLayer(1,mi,mo[0],stride = 1,padding = 'VALID') self.bn1 = BatchNormLayer(mo[0]) self.conv2 = ConvLayer(3,mo[0],mo[1],stride = 1,padding = 'SAME') self.bn2 = BatchNormLayer(mo[1]) self.conv3 = ConvLayer(1,mo[1],mo[2],stride = 1,padding = 'VALID') self.bn3 = BatchNormLayer(mo[2]) self.layers = [self.conv1,self.bn1, self.conv2,self.bn2, self.conv3,self.bn3] def forward(self,X): FX = self.conv1.forward(X) FX = self.bn1.forward(FX) FX = self.f(FX) FX = self.conv2.forward(FX) FX = self.bn2.forward(FX) FX = self.f(FX) FX = self.conv3.forward(FX) FX = self.bn3.forward(FX) return self.f(X + FX) def get_params(self): params = [] for layer in self.layers: params += layer.get_params() return params def set_session(self,session): self.session = session self.conv1.session = session self.bn1.session = session self.conv2.session = session self.bn2.session = session self.conv3.session = session self.bn3.session = session def copyFromKerasLayers(self,layers): self.conv1.copyFromKerasLayers(layers[0]) self.bn1.copyFromKerasLayers(layers[1]) self.conv2.copyFromKerasLayers(layers[3]) self.bn2.copyFromKerasLayers(layers[4]) self.conv3.copyFromKerasLayers(layers[6]) self.bn3.copyFromKerasLayers(layers[7])