def evaluate_model(learning_rate=0.005, n_epochs=50, nkerns=[16, 40, 50, 60], batch_size=32): """ Network for classification :type learning_rate: float :param learning_rate: this is the initial learning rate used (factor for the stochastic gradient) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type nkerns: list of ints :param nkerns: number of kernels on each layer :type batch_size: int :param batch_size: the batch size for training """ print("Evaluating model") rng = numpy.random.RandomState(23455) # loading the data datasets = load_data(3) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_train_batches //= batch_size n_valid_batches //= batch_size n_test_batches //= batch_size # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # start-snippet-1 x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels ###################### # BUILD ACTUAL MODEL # ###################### print('Building the model...') layer0_input = x.reshape((batch_size, 1, 64, 88)) layer0 = MyConvPoolLayer(rng, input=layer0_input, image_shape=(batch_size, 1, 64, 88), p1=2, p2=2, filter_shape=(nkerns[0], 1, 5, 5), poolsize=(2, 2)) layer1 = MyConvPoolLayer(rng, input=layer0.output, image_shape=(batch_size, nkerns[0], 32, 44), p1=2, p2=2, filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2)) layer2 = MyConvPoolLayer(rng, input=layer1.output, image_shape=(batch_size, nkerns[1], 16, 22), p1=2, p2=2, filter_shape=(nkerns[2], nkerns[1], 5, 5), poolsize=(2, 2)) layer3_input = layer2.output.flatten(2) # construct a fully-connected sigmoidal layer layer3 = HiddenLayer(rng, input=layer3_input, n_in=nkerns[2] * 8 * 11, n_out=800, activation=T.tanh) # classify the values of the fully-connected sigmoidal layer layer4 = LogisticRegression(input=layer3.output, n_in=800, n_out=6) # the cost we minimize during training is the NLL of the model cost = layer4.negative_log_likelihood(y) predicted_output = layer4.y_pred # create a function to compute the mistakes that are made by the model test_model = theano.function( [index], layer4.errors(y), givens={ x: test_set_x[index * batch_size:(index + 1) * batch_size], y: test_set_y[index * batch_size:(index + 1) * batch_size] }) validate_model = theano.function( [index], layer4.errors(y), givens={ x: valid_set_x[index * batch_size:(index + 1) * batch_size], y: valid_set_y[index * batch_size:(index + 1) * batch_size] }) # create a list of all model parameters to be fit by gradient descent params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params # create a list of gradients for all model parameters grads = T.grad(cost, params) # the learning rate for batch SGD (adaptive learning rate) l_rate = T.scalar('l_rate', dtype=theano.config.floatX) adaptive_learning_rate = T.scalar('adaptive_learning_rate', dtype=theano.config.floatX) # the momentum SGD momentum = T.scalar('momentum', dtype=theano.config.floatX) # train_model is a function that updates the model parameters by # SGD Since this model has many parameters, it would be tedious to # manually create an update rule for each model parameter. We thus # create the updates list by automatically looping over all # (params[i], grads[i]) pairs. updates = [] for param in params: previous_step = theano.shared(param.get_value() * 0., broadcastable=param.broadcastable) step = momentum * previous_step - l_rate * T.grad(cost, param) updates.append((previous_step, step)) updates.append((param, param + step)) train_model = theano.function( [index, l_rate, momentum], cost, updates=updates, givens={ x: train_set_x[index * batch_size:(index + 1) * batch_size], y: train_set_y[index * batch_size:(index + 1) * batch_size] }) # end-snippet-1 ############### # TRAIN MODEL # ############### print('Training...') # early-stopping parameters patience = 50000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience // 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_validation_loss = numpy.inf best_iter = 0 test_score = 0. start_time = timeit.default_timer() epoch = 0 done_looping = False # initializing the adaptive leaning rate adaptive_learning_rate = learning_rate # initializing the momentum momentum = 0.1 a = 0.0001 b = 0.3 while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 if epoch % 5 == 0: # decreasing the learning rate after every 10 epochs adaptive_learning_rate = 0.95 * adaptive_learning_rate # increasing the learning rate after every 10 epochs #momentum = 1.005 * momentum for minibatch_index in range(n_train_batches): iter = (epoch - 1) * n_train_batches + minibatch_index if iter % 100 == 0: print('training @ iter = ', iter) cost_ij = train_model(minibatch_index, adaptive_learning_rate, momentum) if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [ validate_model(i) for i in range(n_valid_batches) ] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: # increase the learning rate by small amount (adaptive) adaptive_learning_rate += a #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter #Save the model print("Saving model") save_filename = "../saved_models/model3" x = numpy.array([ layer4.W.get_value(), layer4.b.get_value(), layer3.W.get_value(), layer3.b.get_value(), layer2.W.get_value(), layer2.b.get_value(), layer1.W.get_value(), layer1.b.get_value(), layer0.W.get_value(), layer0.b.get_value() ]) numpy.save(save_filename, x) # f = file(save_filename, 'wb') # # cPickle.dump([param.get_value() for param in params], f, protocol=cPickle.HIGHEST_PROTOCOL) # cPickle.dump([param.get_value() for param in params], f, protocol=cPickle.HIGHEST_PROTOCOL) # # cPickle.dump(params, f, protocol=cPickle.HIGHEST_PROTOCOL) # test it on the test set test_losses = [ test_model(i) for i in range(n_test_batches) ] test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of ' 'best model %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) else: # decrease the learning rate by small amount (adaptive) adaptive_learning_rate = adaptive_learning_rate - ( b * adaptive_learning_rate) + (0.01 * a) if patience <= iter: done_looping = True break end_time = timeit.default_timer() print('Optimization complete.') print('Best validation score of %f %% obtained at iteration %i, ' 'with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print( ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)), file=sys.stderr)
def evaluate_model(learning_rate=0.001, n_epochs=100, nkerns=[16, 40, 50, 60], batch_size=20): """ Network for classification of MNIST database :type learning_rate: float :param learning_rate: this is the initial learning rate used (factor for the stochastic gradient) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type nkerns: list of ints :param nkerns: number of kernels on each layer :type batch_size: int :param batch_size: the batch size for training """ print("Evaluating model") rng = numpy.random.RandomState(23455) # loading the data1 datasets = load_test_data(1) valid_set_x, valid_set_y = datasets[0] test_set_x, test_set_y = datasets[1] # compute number of minibatches for training, validation and testing n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_valid_batches //= batch_size n_test_batches //= batch_size # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # start-snippet-1 x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels loaded_params = numpy.load('../saved_models/model1.npy') layer4_W, layer4_b, layer3_W, layer3_b, layer2_W, layer2_b, layer1_W, layer1_b, layer0_W, layer0_b = loaded_params ###################### # BUILD ACTUAL MODEL # ###################### print('Building the model...') # Reshape matrix of rasterized images of shape (batch_size, 32 * 32) # to a 4D tensor, compatible with our LeNetConvPoolLayer # (32, 32) is the size of MNIST images. layer0_input = x.reshape((batch_size, 1, 64, 88)) # Construct the first convolutional pooling layer: # filtering does not reduce the layer size because we use padding # maxpooling reduces the size to (32/2, 32/2) = (16, 16) # 4D output tensor is thus of shape (batch_size, nkerns[0], 16, 16) layer0 = MyConvPoolLayer(rng, input=layer0_input, image_shape=(batch_size, 1, 64, 88), p1=2, p2=2, filter_shape=(nkerns[0], 1, 5, 5), poolsize=(2, 2), W=layer0_W, b=layer0_b) # Construct the second convolutional pooling layer: # filtering does not reduce the layer size because we use padding # maxpooling reduces the size to (16/2, 16/2) = (8, 8) # 4D output tensor is thus of shape (batch_size, nkerns[1], 5, 5) layer1 = MyConvPoolLayer(rng, input=layer0.output, image_shape=(batch_size, nkerns[0], 32, 44), p1=2, p2=2, filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2), W=layer1_W, b=layer1_b) # Construct the third convolutional pooling layer # filtering does not reduce the layer size because we use padding # maxpooling reduces the size to (8/2, 8/2) = (4, 4) # 4D output tensor is thus of shape (batch_size, nkerns[2], 4, 4) layer2 = MyConvPoolLayer(rng, input=layer1.output, image_shape=(batch_size, nkerns[1], 16, 22), p1=2, p2=2, filter_shape=(nkerns[2], nkerns[1], 5, 5), poolsize=(2, 2), W=layer2_W, b=layer2_b) # the HiddenLayer being fully-connected, it operates on 2D matrices of # shape (batch_size, num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (batch_size, nkerns[2] * 4 * 4), # or (500, 20 * 4 * 4) = (500, 320) with the default values. layer3_input = layer2.output.flatten(2) # construct a fully-connected sigmoidal layer layer3 = HiddenLayer(rng, input=layer3_input, n_in=nkerns[2] * 8 * 11, n_out=800, activation=T.tanh, W=layer3_W, b=layer3_b) # classify the values of the fully-connected sigmoidal layer layer4 = LogisticRegression(input=layer3.output, n_in=800, n_out=6, W=layer4_W, b=layer4_b) cost = layer4.negative_log_likelihood(y) predicted_output = layer4.y_pred # create a function to compute the mistakes that are made by the model test_model = theano.function( [index], layer4.errors(y), givens={ x: test_set_x[index * batch_size:(index + 1) * batch_size], y: test_set_y[index * batch_size:(index + 1) * batch_size] }) val_model_preds = theano.function( [index], layer4.prediction(), givens={ x: valid_set_x[index * batch_size:(index + 1) * batch_size], }) validate_model = theano.function( [index], layer4.errors(y), givens={ x: valid_set_x[index * batch_size:(index + 1) * batch_size], y: valid_set_y[index * batch_size:(index + 1) * batch_size] }) # create a list of all model parameters to be fit by gradient descent params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params val_preds = [val_model_preds(i) for i in range(n_valid_batches)] #print(val_preds) #preds = numpy(val_preds) preds = [] for pred in val_preds: for p in pred: preds.append(p) #preds = val_preds.reshape(valid_set_x.get_value(borrow=True).shape[0]) actual_labels = load_test_data(1, 2) n = len(actual_labels) confusion_matrix = numpy.zeros((6, 6)) for i in range(n): confusion_matrix[int(actual_labels[i])][preds[i]] += 1 print(confusion_matrix) correct = 0.0 for i in range(n): if (preds[i] == int(actual_labels[i])): correct += 1.0 accuracy = correct / n print("Number of correctly classified : ", correct) print("Test accuracy is", accuracy * 100)
def evaluate_cifar(learning_rate=0.001, n_epochs=100, dataset_folder='cifar-10-batches-py', nkerns=[16, 20, 20], batch_size=32): """ Network for classification of MNIST database :type learning_rate: float :param learning_rate: this is the initial learning rate used (factor for the stochastic gradient) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type dataset_folder: string :param dataset_folder: the folder containing the batch files for cifar :type nkerns: list of ints :param nkerns: number of kernels on each layer :type batch_size: int :param batch_size: the batch size for training """ rng = numpy.random.RandomState(23455) # loading the cifar data datasets = load_cifar_data(dataset_folder) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_train_batches //= batch_size n_valid_batches //= batch_size n_test_batches //= batch_size # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # start-snippet-1 x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels ###################### # BUILD ACTUAL MODEL # ###################### print('Building the model...') # Reshape matrix of rasterized images of shape (batch_size, 32 * 32) # to a 4D tensor, compatible with our LeNetConvPoolLayer # (32, 32) is the size of MNIST images. layer0_input = x.reshape((batch_size, 3, 32, 32)) # Construct the first convolutional pooling layer: # filtering does not reduce the layer size because we use padding # maxpooling reduces the size to (32/2, 32/2) = (16, 16) # 4D output tensor is thus of shape (batch_size, nkerns[0], 16, 16) layer0 = MyConvPoolLayer(rng, input=layer0_input, image_shape=(batch_size, 3, 32, 32), p1=2, p2=2, filter_shape=(nkerns[0], 3, 5, 5), poolsize=(2, 2)) # Construct the second convolutional pooling layer: # filtering does not reduce the layer size because we use padding # maxpooling reduces the size to (16/2, 16/2) = (8, 8) # 4D output tensor is thus of shape (batch_size, nkerns[1], 5, 5) layer1 = MyConvPoolLayer(rng, input=layer0.output, image_shape=(batch_size, nkerns[0], 16, 16), p1=2, p2=2, filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2)) # Construct the third convolutional pooling layer # filtering does not reduce the layer size because we use padding # maxpooling reduces the size to (8/2, 8/2) = (4, 4) # 4D output tensor is thus of shape (batch_size, nkerns[2], 4, 4) layer2 = MyConvPoolLayer(rng, input=layer1.output, image_shape=(batch_size, nkerns[1], 8, 8), p1=2, p2=2, filter_shape=(nkerns[2], nkerns[1], 5, 5), poolsize=(2, 2)) # the HiddenLayer being fully-connected, it operates on 2D matrices of # shape (batch_size, num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (batch_size, nkerns[2] * 4 * 4), # or (500, 20 * 4 * 4) = (500, 320) with the default values. layer3_input = layer2.output.flatten(2) # construct a fully-connected sigmoidal layer layer3 = HiddenLayer(rng, input=layer3_input, n_in=nkerns[2] * 4 * 4, n_out=500, activation=T.tanh) # classify the values of the fully-connected sigmoidal layer layer4 = LogisticRegression(input=layer3.output, n_in=500, n_out=5) # the cost we minimize during training is the NLL of the model cost = layer4.negative_log_likelihood(y) predicted_output = layer4.y_pred # create a function to compute the mistakes that are made by the model test_model = theano.function( [index], layer4.errors(y), givens={ x: test_set_x[index * batch_size:(index + 1) * batch_size], y: test_set_y[index * batch_size:(index + 1) * batch_size] }) validate_model = theano.function( [index], layer4.errors(y), givens={ x: valid_set_x[index * batch_size:(index + 1) * batch_size], y: valid_set_y[index * batch_size:(index + 1) * batch_size] }) # create a list of all model parameters to be fit by gradient descent params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params # create a list of gradients for all model parameters grads = T.grad(cost, params) # the learning rate for batch SGD (adaptive learning rate) l_rate = T.scalar('l_rate', dtype=theano.config.floatX) # the momentum SGD momentum = T.scalar('momentum', dtype=theano.config.floatX) # train_model is a function that updates the model parameters by # SGD Since this model has many parameters, it would be tedious to # manually create an update rule for each model parameter. We thus # create the updates list by automatically looping over all # (params[i], grads[i]) pairs. updates = [] for param in params: previous_step = theano.shared(param.get_value() * 0., broadcastable=param.broadcastable) step = momentum * previous_step - l_rate * T.grad(cost, param) updates.append((previous_step, step)) updates.append((param, param + step)) train_model = theano.function( [index, l_rate, momentum], cost, updates=updates, givens={ x: train_set_x[index * batch_size:(index + 1) * batch_size], y: train_set_y[index * batch_size:(index + 1) * batch_size] }) # end-snippet-1 ############### # TRAIN MODEL # ############### print('Training...') # early-stopping parameters patience = 50000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience // 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_validation_loss = numpy.inf best_iter = 0 test_score = 0. start_time = timeit.default_timer() epoch = 0 done_looping = False # initializing the adaptive leaning rate adaptive_learning_rate = learning_rate # initializing the momentum momentum = 0.9 while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 if epoch % 10 == 0: # decreasing the learning rate after every 10 epochs adaptive_learning_rate = 0.95 * adaptive_learning_rate # increasing the learning rate after every 10 epochs momentum = 1.05 * momentum for minibatch_index in range(n_train_batches): iter = (epoch - 1) * n_train_batches + minibatch_index if iter % 100 == 0: print('training @ iter = ', iter) cost_ij = train_model(minibatch_index, adaptive_learning_rate, momentum) if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [ validate_model(i) for i in range(n_valid_batches) ] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: # increase the learning rate by small amount (adaptive) adaptive_learning_rate = 1.01 * adaptive_learning_rate #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [ test_model(i) for i in range(n_test_batches) ] test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of ' 'best model %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) else: # decrease the learning rate by small amount (adaptive) adaptive_learning_rate = 0.5 * adaptive_learning_rate if patience <= iter: done_looping = True break end_time = timeit.default_timer() print('Optimization complete.') print('Best validation score of %f %% obtained at iteration %i, ' 'with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print( ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)), file=sys.stderr)
def evaluate_model(learning_rate=0.001, n_epochs=100, nkerns=[16, 40, 50, 60], batch_size=20): """ Network for classification of MNIST database :type learning_rate: float :param learning_rate: this is the initial learning rate used (factor for the stochastic gradient) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type nkerns: list of ints :param nkerns: number of kernels on each layer :type batch_size: int :param batch_size: the batch size for training """ print("Evaluating model") rng = numpy.random.RandomState(23455) # loading the data datasets = load_test_data() valid_set_x, valid_set_y = datasets[0] test_set_x, test_set_y = datasets[1] # compute number of minibatches for training, validation and testing n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_valid_batches //= batch_size n_test_batches //= batch_size # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # start-snippet-1 x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels loaded_params = numpy.load('../saved_models/model.npy') layer4_W, layer4_b, layer3_W, layer3_b, layer2_W, layer2_b, layer1_W, layer1_b, layer0_W, layer0_b = loaded_params ###################### # BUILD ACTUAL MODEL # ###################### print('Building the model...') chosen_height = 64 chosen_width = 64 # Reshape matrix of rasterized images of shape (batch_size, 32 * 32) # to a 4D tensor, compatible with our LeNetConvPoolLayer # (32, 32) is the size of MNIST images. layer0_input = x.reshape((batch_size, 3, chosen_height, chosen_width)) # Construct the first convolutional pooling layer: # filtering does not reduce the layer size because we use padding # maxpooling reduces the size to (32/2, 32/2) = (16, 16) # 4D output tensor is thus of shape (batch_size, nkerns[0], 16, 16) layer0 = MyConvPoolLayer(rng, input=layer0_input, image_shape=(batch_size, 3, chosen_height, chosen_width), p1=2, p2=2, filter_shape=(nkerns[0], 3, 5, 5), poolsize=(2, 2)) # Construct the second convolutional pooling layer: # filtering does not reduce the layer size because we use padding # maxpooling reduces the size to (16/2, 16/2) = (8, 8) # 4D output tensor is thus of shape (batch_size, nkerns[1], 5, 5) layer1 = MyConvPoolLayer(rng, input=layer0.output, image_shape=(batch_size, nkerns[0], chosen_height / 2, chosen_width / 2), p1=2, p2=2, filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2)) # Construct the third convolutional pooling layer # filtering does not reduce the layer size because we use padding # maxpooling reduces the size to (8/2, 8/2) = (4, 4) # 4D output tensor is thus of shape (batch_size, nkerns[2], 4, 4) layer2 = MyConvPoolLayer(rng, input=layer1.output, image_shape=(batch_size, nkerns[1], chosen_height / 4, chosen_width / 4), p1=2, p2=2, filter_shape=(nkerns[2], nkerns[1], 5, 5), poolsize=(2, 2)) # the HiddenLayer being fully-connected, it operates on 2D matrices of # shape (batch_size, num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (batch_size, nkerns[2] * 4 * 4), # or (500, 20 * 4 * 4) = (500, 320) with the default values. layer3_input = layer2.output.flatten(2) # construct a fully-connected sigmoidal layer layer3 = HiddenLayer(rng, input=layer3_input, n_in=nkerns[2] * (chosen_height / 8) * (chosen_width / 8), n_out=800, activation=T.tanh) # classify the values of the fully-connected sigmoidal layer layer4 = LogisticRegression(input=layer3.output, n_in=800, n_out=6) cost = layer4.negative_log_likelihood(y) predicted_output = layer4.y_pred # create a function to compute the mistakes that are made by the model test_model = theano.function( [index], layer4.errors(y), givens={ x: test_set_x[index * batch_size:(index + 1) * batch_size], y: test_set_y[index * batch_size:(index + 1) * batch_size] }) validate_model = theano.function( [index], layer4.errors(y), givens={ x: valid_set_x[index * batch_size:(index + 1) * batch_size], y: valid_set_y[index * batch_size:(index + 1) * batch_size] }) # create a list of all model parameters to be fit by gradient descent params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params #Loading the model # f = file('../saved_models/model317.save.npy', 'r') # params = cPickle.load(f) # print(params) # f.close() # # layer4.params, layer3.params, layer2.params, layer1.params, layer0.params = params # # layer4.W, layer4.b = layer4.params # # layer3.W, layer3.b = layer3.params # # layer2.W, layer2.b = layer2.params # # layer1.W, layer1.b = layer1.params # # layer0.W, layer0.b = layer0.params # layer4.W, layer4.b, layer3.W, layer3.b, layer2.W, layer2.b, layer1.W, layer1.b, layer0.W, layer0.b = params # layer4.params = [layer4.W, layer4.b] # layer3.params = [layer3.W, layer3.b] # layer2.params = [layer2.W, layer2.b] # layer1.params = [layer1.W, layer1.b] # layer0.params = [layer0.W, layer0.b] # x = cPickle.load(f) # layer4.params = [layer4.W, layer4.b] # layer3.params = [layer3.W, layer3.b] # layer2.params = [layer2.W, layer2.b] # layer1.params = [layer1.W, layer1.b] # layer0.params = [layer0.W, layer0.b] # test it on the test set test_losses = [test_model(i) for i in range(n_test_batches)] validation_losses = [validate_model(i) for i in range(n_valid_batches)] test_score = numpy.mean(test_losses) validation_score = numpy.mean(validation_losses) print((' Validation error is %f %%') % (validation_score * 100.)) print((' Test error is %f %%') % (test_score * 100.))