Esempio n. 1
0
 def _get_cloudy_table(red, cdir=None):
     """Get the cloudy table if we didn't already"""
     #Generate cloudy tables
     if cdir != None:
         return convert_cloudy.CloudyTable(red, cdir)
     else:
         return convert_cloudy.CloudyTable(red)
Esempio n. 2
0
def get_cloudy_table(ss_corr=True, redshift=3):
    """
    Helper function to load a table.
    If ss_corr == True, attenuate the UVB with a self-shielding correction
    which accounts for the frequency dependence of the hydrogen cross-section.
    """
    if ss_corr:
        tab = cc.CloudyTable(redshift, "ion_out_photo_atten")
    else:
        tab = cc.CloudyTable(redshift, "ion_out_no_atten")
    return tab
Esempio n. 3
0
def plot_SivsHI(mets=0.05):
    """
        Plot the SiII fraction as a function of density, for some metallicity.
        Mets is an array, metallicity as a fraction of solar.
    """
    if np.size(mets) == 1:
        mets = np.array([mets,])
    tab = cc.CloudyTable(3)

    #The hydrogen density in atoms/cm^3
    dens = np.logspace(-5,2,100)

    #Roughly mean DLA metallicity

    tabHI = cg.RahmatiRT(3, 0.71)

    tempHI = 1e4*np.ones_like(dens)
    fracHI = tabHI.neutral_fraction(dens,tempHI)
    plt.semilogx(dens, fracHI, color="red",ls="--")

    ls = [":","-","-."]
    for met in mets:
        metSi = tab.get_solar("Si")*met*np.ones_like(dens)
        fracSi = tab.ion("Si",2,metSi,dens)
        plt.semilogx(dens, fracSi, color="green",ls=ls.pop())

    plt.xlabel(r"$\rho_\mathrm{H}\; (\mathrm{amu}/\mathrm{cm}^3$)")
    plt.ylabel(r"$\mathrm{m}_\mathrm{SiII} / \mathrm{m}_\mathrm{Si}$")
    plt.show()
    save_figure(path.join(outdir,"Si_fracs"))
Esempio n. 4
0
 def set_nHI_grid(self, gas=False, start=0):
     """Set up the grid around each halo where the HI is calculated.
     """
     star=cold_gas.RahmatiRT(self.redshift, self.hubble, molec=self.molec)
     self.cloudy_table = convert_cloudy.CloudyTable(self.redshift)
     self.once=True
     #Now grid the HI for each halo
     files = hdfsim.get_all_files(self.snapnum, self.snap_dir)
     #Larger numbers seem to be towards the beginning
     files.reverse()
     end = np.min([np.size(files),self.end])
     for xx in xrange(start, end):
         ff = files[xx]
         f = h5py.File(ff,"r")
         print "Starting file ",ff
         bar=f["PartType0"]
         ipos=np.array(bar["Coordinates"])
         #Get HI mass in internal units
         mass=np.array(bar["Masses"])
         #Carbon mass fraction
         den = star.get_code_rhoH(bar)
         temp = star.get_temp(bar)
         mass_frac = np.array(bar["GFM_Metals"][:,2])
         #Floor on the mass fraction of the metal
         ind = np.where(mass_frac > 1e-10)
         mass = mass[ind]*mass_frac[ind]
         #High densities will have no CIV anyway.
         den[np.where(den > 1e4)] = 9999.
         den[np.where(den < 1e-7)] = 1.01e-7
         temp[np.where(temp > 3e8)] = 3e8
         temp[np.where(temp < 1e3)] = 1e3
         mass *= self.cloudy_table.ion("C", self.ion, den[ind], temp[ind])
         smooth = hsml.get_smooth_length(bar)[ind]
         ipos = ipos[ind,:][0]
         [self.sub_gridize_single_file(ii,ipos,smooth,mass,self.sub_nHI_grid) for ii in xrange(0,self.nhalo)]
         f.close()
         #Explicitly delete some things.
         del ipos
         del mass
         del smooth
     #Deal with zeros: 0.1 will not even register for things at 1e17.
     #Also fix the units:
     #we calculated things in internal gadget /cell and we want atoms/cm^2
     #So the conversion is mass/(cm/cell)^2
     for ii in xrange(0,self.nhalo):
         massg=self.UnitMass_in_g/self.hubble/(self.protonmass*12.011)
         epsilon=2.*self.sub_radii[ii]/(self.ngrid[ii])*self.UnitLength_in_cm/self.hubble/(1+self.redshift)
         self.sub_nHI_grid[ii]*=(massg/epsilon**2)
         self.sub_nHI_grid[ii]+=0.1
         np.log10(self.sub_nHI_grid[ii],self.sub_nHI_grid[ii])
     return
Esempio n. 5
0
    def __init__(self,snap_dir,snapnum,elem,ion,minpart=400,reload_file=False,savefile=None):
        self.elem=elem
        self.ion=ion
        self.species = ['H', 'He', 'C', 'N', 'O', 'Ne', 'Mg', 'Si', 'Fe']
        self.minpart=minpart
        self.snapnum=snapnum
        self.snap_dir=snap_dir
        self.set_units()

        if savefile==None:
            self.savefile=path.join(snap_dir,"snapdir_"+str(snapnum).rjust(3,'0'),"halomet_grid.hdf5")
        else:
            self.savefile = savefile
        try:
            if reload_file:
                raise KeyError("reloading")
            #First try to load from a file
            self.load_savefile(self.savefile)
        except (IOError,KeyError):
            self.load_header()
            self.load_halos(minpart)
            #Generate cloudy tables
            self.cloudy_table = convert_cloudy.CloudyTable(self.redshift)
            # Conversion factors from internal units
            rscale = self.UnitLength_in_cm/(1+self.redshift)/self.hubble    # convert length to cm
            mscale = self.UnitMass_in_g/self.hubble   # convert mass to g
            self.dscale = mscale / rscale **3 # Convert density to g / cm^3
            escale = 1.0e6           # convert energy/unit mass to J kg^-1
            #convert U (J/kg) to T (K) : U = N k T / (γ - 1)
            #T = U (γ-1) μ m_P / k_B
            #where k_B is the Boltzmann constant
            #γ is 5/3, the perfect gas constant
            #m_P is the proton mass
            #μ is 1 / (mean no. molecules per unit atomic weight) calculated in loop.
            boltzmann = 1.3806504e-23
            self.tscale = ((5./3.-1.0) * 1e-3*self.protonmass * escale ) / boltzmann

            #Otherwise regenerate from the raw data
            self.sub_nHI_grid=np.array([np.zeros([self.ngrid[i],self.ngrid[i]]) for i in xrange(0,self.nhalo)])
            self.set_nHI_grid()
        return
Esempio n. 6
0
 def __init__(self,snap_dir,snapnum,nslice=1,savefile=None, start=0, end=3000, ngrid=16384, cdir=None):
     bi.BoxHI.__init__(self, snap_dir, snapnum, nslice, False, savefile, False,start=start, end=end,ngrid=ngrid)
     if cdir != None:
         self.cloudy_table = convert_cloudy.CloudyTable(self.redshift, cdir)
     else:
         self.cloudy_table = convert_cloudy.CloudyTable(self.redshift)
Esempio n. 7
0
    def __init__(self,run=None,snap_base=None,CGMsnap_base=None,save_base=None,res=None,snapnum=None,grp_ids=None,\
        grid_radius_pkpc=None,elem_list=None,ion_list=None,cloudy_type=None,cloudy_dir=None,\
        verbose=False,**kwargs):
        self.run = run
        self.snap_base = snap_base
        self.CGMsnap_base = CGMsnap_base
        self.save_base = save_base
        self.res = res
        self.snapnum = snapnum
        # self.group_min_mass = group_min_mass
        self.grid_radius_pkpc = grid_radius_pkpc
        self.elem_list = elem_list
        self.ion_list = ion_list
        self.cloudy_type = cloudy_type
        self.cloudy_dir = cloudy_dir
        self.kwargs = kwargs
        self.grp_ids = grp_ids
        self.verbose = verbose

        # Or hardcode values:
        # self.run = None
        # self.snap_base = None
        # self.CGMsnap_base = '/n/home04/jsuresh/data1/Projects/Feedback_and_CGM/CGM_new/data/CGM_snaps/'
        # self.save_base = '/n/home04/jsuresh/data1/Projects/Feedback_and_CGM/CGM_new/data/grids/'
        # self.res = None #Future: get this from the simulation
        # self.snapnum = None
        # # self.group_min_mass = None
        # self.grid_radius_pkpc = None
        # self.elem_list = ["C","C"]
        # self.ion_list = [-1,4]
        # self.cloudy = "UVB_sf_xrays_ext"
        # self.cloudy_dir = '/n/home04/jsuresh/scratch1/Cloudy_test/UVB_sf_xrays_ext/'

        # Here's where the magic happens
        comm = MPI.COMM_WORLD
        rank = comm.Get_rank()
        size = comm.Get_size()
        if self.verbose:
            print "my rank = {}".format(rank)
            print "my size = {}".format(size)
        #print "done with MPI comm/rank/size initialization!"

        # Create necessary folder if it does not exist:
        if rank == 0:
            grid_dir = self.save_base + "{}/s{}/".format(self.run, snapnum)
            if not os.path.isdir(grid_dir):
                if self.verbose:
                    print "Creating {}".format(grid_dir)
                os.mkdir(grid_dir)

            # Load header information from snapshot:
            self.load_header()
        else:
            self.redshift = None
            self.hubble = None
            self.box = None

        # Broadcast necessary data from root process to other processes
        self.redshift = comm.bcast(self.redshift, root=0)
        self.hubble = comm.bcast(self.hubble, root=0)
        self.box = comm.bcast(self.box, root=0)

        # Other set-up
        self.grid_radius = AU.CodePosition(self.grid_radius_pkpc,
                                           self.redshift,
                                           hubble=self.hubble)
        self.npart = self.res**3.
        self.ngrid = int(
            np.ceil(40 * self.npart**(1. / 3) / self.box * 2 *
                    self.grid_radius))
        tab = ccl.CloudyTable(self.redshift, directory=cloudy_dir)
        self.n_species = len(self.elem_list)
        self.n_selected_groups = np.size(self.grp_ids)

        if self.cloudy_type == "UVB_sf_xrays_ext":
            if not kwargs.has_key(multiple_sources):
                try:
                    self.gal_SFR = kwargs['gal_SFR']
                except:
                    raise KeyError(
                        "Need gal_SFR to be passed in for cloudy type {}".
                        format(self.cloudy_type))

            if kwargs.has_key(
                    multiple_sources) and kwargs['multiple_sources'] == True:
                try:
                    self.sub_id_dict = kwargs[
                        'sub_id_dict']  # Dictionary which, for each group, has list of corresponding subhalo IDs
                    self.sub_pos = kwargs['sub_pos']
                    self.sub_SM = kwargs['sub_SM']
                    self.sub_SFR = kwargs['sub_SFR']
                    self.grp_firstsub = kwargs['grp_firstsub']

                except:
                    raise KeyError(
                        "Missing some of the subhalo data which are necessary to implement multiple sources."
                    )

        for i in np.arange(self.n_selected_groups):
            if (i % size == rank):
                if self.verbose:
                    print "Projecting i / task:", i, rank
                grp_id = self.grp_ids[i]

                # Work on this group if CGM snapshot exists and grid file does not already exist:
                CGMsnap_file_path = self.CGMsnap_base + "{}/s{}/{}.hdf5".format(
                    self.run, self.snapnum,
                    str(int(grp_id)).zfill(5))
                save_path = self.save_base + "{}/s{}/{}.hdf5".format(
                    self.run, snapnum,
                    str(int(grp_id)).zfill(5))
                if not os.path.isfile(CGMsnap_file_path):
                    if self.verbose:
                        print "File {} does not exist!  Skipping...".format(
                            CGMsnap_file_path)
                elif os.path.isfile(save_path):
                    if self.verbose:
                        print "File {} already exists!  Skipping...".format(
                            save_path)
                else:
                    if self.verbose:
                        print "Working on {}".format(save_path)
                    data_dict = self.load_CGM_file(grp_id,
                                                   CGMsnap_file_path,
                                                   center_positions=True,
                                                   radial_cut=True)

                    grid_dict = self.calc_grid(data_dict, kernel_type='SPH')
                    self.save_grid(grp_id, grid_dict, save_path)