Esempio n. 1
0
    def _convert_input_layers(self):
        """
        :rtype: None
        """
        for model_input in self._context.inputs:
            input_operation = self._context.graph.get_operation_by_name(
                model_input.name)
            shape = self._graph_helper.get_op_output_shape(input_operation)
            if None in shape:
                message = code_to_message.get_message(
                    'ERROR_TF_UNABLE_TO_RESOLVE_GRAPH_INPUT_DIMS')
                raise ConverterError(message(model_input.name))
            if model_input.shape != shape:
                message = code_to_message.get_message(
                    'ERROR_TF_UNEXPECTED_INPUT_SHAPE')
                raise ConverterError(message(model_input.shape, shape))

            self._logger.info(
                code_to_message.get_progress_message(
                    'INFO_TF_BUILDING_INPUT_LAYER')(input_operation.name,
                                                    shape))

            layer_name = str(input_operation.outputs[0].name)
            descriptor = InputLayerDescriptor(layer_name, [input_operation])
            self._input_descriptors.append(descriptor)
            self._ops.remove(input_operation)
            self._context.model.add_data_layer(descriptor.output_names[0],
                                               shape, 'rgb', 'rgb',
                                               model_input.type)
Esempio n. 2
0
    def resolve_layer(self, graph_matcher, graph_helper):
        descriptors = []
        for sequence in self.sequences:
            for match in graph_matcher.match_sequence(sequence):
                pad_op = match['root']
                input_op = match['input']
                paddings_op = match['paddings']

                paddings_tensor = graph_helper.evaluate_tensor_output(paddings_op.outputs[0])
                paddings_shape = graph_helper.get_op_output_shape(paddings_op)

                input_rank = len(graph_helper.get_op_output_shape(input_op))
                if [input_rank, 2] != paddings_shape:
                    raise ConverterError(code_to_message.get_message(
                        'ERROR_TF_PAD_INVALUD_PADDINGS')(str([input_rank, 2]), str(paddings_shape)))

                if 'const_values' in match:
                    const_values_op = match['const_values']
                    const_values = graph_helper.evaluate_tensor_output(const_values_op.outputs[0])
                else:
                    const_values = 0.0

                if not np.isscalar(const_values):
                    raise ConverterError(code_to_message.get_message('ERROR_TF_PAD_CONSTANT_NOT_SCALAR'))

                consumed_nodes = match.consumed_nodes
                pad_descriptor = PadLayerResolver.Descriptor(
                    str(pad_op.name), consumed_nodes, paddings_tensor,
                    snpe.modeltools.PADDING_CONSTANT, const_values,
                    output_names=[str(pad_op.outputs[0].name)])
                descriptors.extend([pad_descriptor])

        return descriptors
Esempio n. 3
0
    def __import_graph(cls, graph_path, session, out_nodes_names):
        """
        :type graph_path: str
        :type session: tensorflow.Session
        :type out_nodes_names: list[str]
        :rtype: tf.GraphDef
        """
        if not os.path.exists(graph_path):
            raise ConverterError(
                code_to_message.get_message(
                    'ERROR_TF_GRAPH_FILE_DOES_NOT_EXIST')(graph_path))

        graph_path = os.path.abspath(graph_path)
        if graph_path.endswith('.meta'):
            checkpoint = graph_path.split('.meta')[0]
            graph_def = cls.__import_from_meta_graph(graph_path, checkpoint,
                                                     out_nodes_names)
        else:
            graph_def = cls.__import_from_frozen_graph(graph_path)

        if len(graph_def.node) == 0:
            raise ConverterError(
                code_to_message.get_message(
                    'ERROR_TF_NODES_NOT_FOUND_IN_GRAPH'))

        with session.graph.as_default():
            tf.import_graph_def(graph_def, name="")
        return graph_def
Esempio n. 4
0
    def get_op_input_tensors(cls, operations, input_types):
        """
        :type operations: tensorflow.Operation
        :type input_types:
        :return: tuple[tensorflow.Tensor]
        """
        tensors = [tensor for tensor in operations.inputs]
        types = [t.op.type for t in tensors]
        if len(types) != len(input_types):
            raise TensorNotFoundError(
                code_to_message.get_message(
                    'ERROR_TF_INPUT_DOES_NOT_MATCH_COUNT')(operations.name,
                                                           types, input_types))

        input_tensors = []
        for i, t in enumerate(tensors):
            if types[i] == input_types[i] or input_types[i] == '?':
                input_tensors.append(t)
            else:
                raise TensorNotFoundError(
                    code_to_message.get_message(
                        'ERROR_TF_INPUT_DOES_NOT_MATCH_TYPES')(operations.name,
                                                               types,
                                                               input_types))

        if len(input_tensors) > 1:
            return tuple(input_tensors)
        else:
            return input_tensors[0]
Esempio n. 5
0
    def get_input_name(cls, converter_context, descriptor, input_descriptors):
        """
        :type converter_context: converters.tensorflow.converter.ConverterContext
        :type input_descriptors: [LayerDescriptor]
        :type descriptor: LayerDescriptor
        :rtype: str
        """
        if len(input_descriptors) > 1:
            raise ConverterError(
                code_to_message.get_message('ERROR_TF_LAYER_INPUT_COUNT_ERROR')
                (input_descriptors[0].layer_type, 1, len(input_descriptors)))

        input_names = cls.get_input_names(converter_context, descriptor,
                                          input_descriptors)
        if len(input_names) == 0:
            raise ConverterError(
                code_to_message.get_message('ERROR_TF_LAYER_NO_INPUT_FOUND')(
                    descriptor.layer_type, descriptor.layer_name))

        if len(input_names) > 1:
            raise ConverterError(
                code_to_message.get_message('ERROR_TF_LAYER_INPUT_COUNT_ERROR')
                (input_descriptors[0].layer_type, 1, len(input_descriptors)))

        return input_names[0]
Esempio n. 6
0
    def resolve_layer(self, graph_matcher, graph_helper):
        potential_descriptors = []
        for sequence in self.sequences:
            matches = graph_matcher.match_sequence(sequence)
            for match in matches:
                extract_glimpse = match['extract_glimpse']

                size = match['size']
                size_value = graph_helper.evaluate_tensor_output(size.outputs[0])
                if size_value.size != 2:
                    raise ConverterError(
                        code_to_message.get_message('ERROR_TF_RESOLVE_EXTRACT_GLIMPSE_SIZE'))

                offsets = match['offsets']
                offsets_value = graph_helper.evaluate_tensor_output(offsets.outputs[0])
                if len(offsets_value.shape) != 2 or offsets_value.shape[1] != 2:
                    raise ConverterError(
                        code_to_message.get_message('ERROR_TF_RESOLVE_EXTRACT_GLIMPSE_OFFSETS'))

                output_op_nodes_names = [str(extract_glimpse.outputs[0].name)]
                consumed_nodes = match.consumed_nodes

                centered = bool(extract_glimpse.get_attr('centered'))
                normalized = bool(extract_glimpse.get_attr('normalized'))
                uniform_noise = bool(extract_glimpse.get_attr('uniform_noise'))

                potential_descriptors.append(
                    ExtractGlimpseLayerResolver.Descriptor(str(extract_glimpse.name), consumed_nodes,
                                                           size_value[1], size_value[0],
                                                           offsets_value, centered,normalized,
                                                           uniform_noise,
                                                           output_names=output_op_nodes_names))
        return potential_descriptors
Esempio n. 7
0
    def resolve_layer(self, graph_matcher, graph_helper):
        matches = graph_matcher.match_sequence(self.sequence)
        if len(matches) == 0:
            return []
        descriptors = []
        for match in matches:
            variance_op = match['variance']
            epsilon_op = match['epsilon']
            if variance_op.type not in ['Identity', 'Const']:
                raise ConverterError(
                    code_to_message.get_message(
                        'ERROR_TF_BATCHNORM_RESOLVE_VARIANCE'))
            variance = graph_helper.evaluate_tensor_output(
                variance_op.outputs[0])

            if epsilon_op.type not in ['Identity', 'Const']:
                raise ConverterError(
                    code_to_message.get_message(
                        'ERROR_TF_BATCHNORM_RESOLVE_EPSILON'))
            epsilon = graph_helper.evaluate_tensor_output(
                epsilon_op.outputs[0])

            scale_op = match['scale']
            if scale_op.type not in ['Identity', 'Const', 'Fill']:
                raise ConverterError(
                    code_to_message.get_message(
                        'ERROR_TF_BATCHNORM_RESOLVE_SCALE'))
            scale = graph_helper.evaluate_tensor_output(scale_op.outputs[0])

            mean_op = match['mean']
            if mean_op.type not in ['Identity', 'Const']:
                raise ConverterError(
                    code_to_message.get_message(
                        'ERROR_TF_BATCHNORM_RESOLVE_MEAN'))
            mean = graph_helper.evaluate_tensor_output(mean_op.outputs[0])

            beta_op = match['beta']
            if beta_op.type not in ['Identity', 'Const']:
                raise ConverterError(
                    code_to_message.get_message(
                        'ERROR_TF_BATCHNORM_RESOLVE_BETA'))
            beta = graph_helper.evaluate_tensor_output(beta_op.outputs[0])

            output_op_nodes_names = [
                str(match[node.identifier].outputs[0].name)
                for node in self.sequence.output_nodes
            ]
            descriptors.append(
                BatchNormLayerResolver.Descriptor(
                    str(match['d'].name),
                    match.consumed_nodes,
                    bn_mul_op=match['d'],
                    mean=mean,
                    variance=variance,
                    epsilon=epsilon,
                    scale=scale,
                    beta=beta,
                    output_names=output_op_nodes_names))
        return descriptors
Esempio n. 8
0
 def filter_single_op_by_type(cls, operations, operation_type):
     ops = cls.filter_ops_by_type(operations, operation_type)
     if len(ops) == 0:
         operations_message = [(op.name, op.type) for op in operations]
         raise OperationNotFoundError(
             code_to_message.get_message('ERROR_TF_OPERATION_NOT_FOUND')(
                 operation_type, operations_message))
     if len(ops) > 1:
         raise OperationNotFoundError(
             code_to_message.get_message('ERROR_TF_MULTIPLE_NODES_FOUND')(
                 operation_type))
     return ops[0]
Esempio n. 9
0
    def resolve_layer(self, graph_matcher, graph_helper):
        matches = graph_matcher.match_sequence(self.sequence)
        if len(matches) == 0:
            return []
        descriptors = []
        for match in matches:
            conv_trans_op = match['root']
            _, weights_tensor, input_tensor = GraphHelper.get_op_input_tensors(
                conv_trans_op, ('?', '?', '?'))
            if weights_tensor.op.type not in ['Identity', 'Const']:
                raise ConverterError(
                    code_to_message.get_message(
                        'ERROR_TF_DECONV_CANT_FIND_WEIGHTS_NODE'))
            strides = conv_trans_op.get_attr('strides')
            padding = conv_trans_op.get_attr('padding')
            weights = graph_helper.evaluate_tensor_output(weights_tensor)
            consumed_nodes = match.consumed_nodes
            output_op_nodes_names = [
                str(match[node.identifier].outputs[0].name)
                for node in self.sequence.output_nodes
            ]
            bias_op = None
            try:
                output_ops = graph_helper.get_op_outputs(conv_trans_op)
                bias_op = GraphHelper.filter_single_op_by_type(
                    output_ops, 'BiasAdd')

                _, biases = GraphHelper.get_op_input_tensors(
                    bias_op, ('?', '?'))
                if biases.op.type not in ['Const', 'Identity']:
                    raise ConverterError(
                        code_to_message.get_message(
                            'ERROR_TF_DECONV_CANT_FIND_BIAS_NODE'))
                biases = graph_helper.evaluate_tensor_output(biases)
                consumed_nodes.append(bias_op)
                output_op_nodes_names = [str(bias_op.outputs[0].name)]
            except OperationNotFoundError:
                biases = np.zeros(np.shape(weights)[-2], dtype=np.float32)

            descriptors.append(
                DeConvolutionOptimizedLayerResolver.Descriptor(
                    str(conv_trans_op.name),
                    consumed_nodes,
                    conv_trans_op,
                    bias_op,
                    weights,
                    strides,
                    padding,
                    biases,
                    input_tensor,
                    output_names=output_op_nodes_names))
        return descriptors
Esempio n. 10
0
    def resolve_layer(self, graph_matcher, graph_helper):
        potential_descriptors = []
        for sequence in self.sequences:
            matches = graph_matcher.match_sequence(sequence)
            for match in matches:
                coefficients = match['alphas']
                add_op = match['f']
                if coefficients.type not in ['Identity', 'Const']:
                    raise ConverterError(
                        code_to_message.get_message(
                            'ERROR_TF_RESOLVE_PRELU_COEFF'))

                output_op_nodes_names = [
                    str(match[node.identifier].outputs[0].name)
                    for node in sequence.output_nodes
                ]
                consumed_nodes = match.consumed_nodes
                potential_descriptors.append(
                    PReLuLayerResolver.Descriptor(
                        str(add_op.name),
                        consumed_nodes,
                        graph_helper.evaluate_tensor_output(
                            coefficients.outputs[0]),
                        output_names=output_op_nodes_names))
        return potential_descriptors
Esempio n. 11
0
 def resolve_layer(self, graph_matcher, graph_helper):
     matches = graph_matcher.match_sequence(self.sequence)
     potential_descriptors = []
     for match in matches:
         bn_op = match['root']
         parameter_tensors = self._get_parameter_tensors(
             graph_helper, bn_op)
         if len(parameter_tensors) < 4:
             raise ConverterError(
                 code_to_message.get_message(
                     'ERROR_TF_BATCHNORM_GLOBALNORMALIZATION_INPUT'))
         epsilon = bn_op.get_attr('epsilon')
         scale = parameter_tensors[0]
         beta = parameter_tensors[1]
         mean = parameter_tensors[2]
         variance = parameter_tensors[3]
         consumed_nodes = match.consumed_nodes
         potential_descriptors.append(
             FusedBatchNormNormLayerResolver.Descriptor(str(bn_op.name),
                                                        consumed_nodes,
                                                        bn_mul_op=bn_op,
                                                        mean=mean,
                                                        variance=variance,
                                                        epsilon=epsilon,
                                                        scale=scale,
                                                        beta=beta))
     return potential_descriptors
Esempio n. 12
0
 def _create_layer_builder(cls, descriptor):
     builder_class = layers.layer_builders.get(type(descriptor), None)
     if builder_class is None:
         raise ConverterError(
             code_to_message.get_message(
                 'ERROR_TF_NO_INPUT_TO_CREATE_LAYER')(type(descriptor)))
     return builder_class()
Esempio n. 13
0
    def resolve_layer(self, graph_matcher, graph_helper):
        descriptors = []
        for sequence in self.sequences:
            for match in graph_matcher.match_sequence(sequence):
                transpose_op = match['root']
                input_op = match['input']
                order_op = match['order']

                order_tensor = graph_helper.evaluate_tensor_output(order_op.outputs[0])

                input_shape = graph_helper.get_op_output_shape(input_op)
                order_shape = graph_helper.get_op_output_shape(order_op)

                input_rank = len(input_shape)
                order_rank = len(order_shape)
                try:
                    assert order_rank == 1
                    for d in range(input_rank):
                        assert d in order_tensor
                except AssertionError:
                    raise ConverterError(code_to_message.get_message(
                        'ERROR_TF_PERMUTE_INVALID_ORDER_TENSOR')(str(order_tensor)))

                consumed_nodes = match.consumed_nodes
                permute_descriptor = PermuteLayerResolver.Descriptor(
                    str(transpose_op.name), consumed_nodes, order_tensor,
                    output_names=[str(transpose_op.outputs[0].name)])
                descriptors.extend([permute_descriptor])

        return descriptors
Esempio n. 14
0
 def _get_input_layer_output_op_for(self, operation):
     """
     :type operation: tensorflow.Operation
     :rtype: tensorflow.Operation
     """
     input_tensors = self._get_input_layers_output_tensors_for(operation)
     ops = uniques([t.op for t in input_tensors])
     if len(ops) == 0:
         raise ConverterError(
             code_to_message.get_message(
                 'ERROR_TF_INPUT_OPERATION_NOT_FOUND')(operation.name))
     if len(ops) != 1:
         raise ConverterError(
             code_to_message.get_message(
                 'ERROR_TF_EXPECTED_SINGLE_OUTPUT_FROM_PREVIOUS_LAYER'))
     return ops[0]
Esempio n. 15
0
    def build_layer(self, converter_context, descriptor, input_descriptors, output_descriptors):
        """
        :type input_descriptors: [converters.tensorflow.common.LayerDescriptor]
        :type output_descriptors: [converters.tensorflow.common.LayerDescriptor]
        :type converter_context: converters.tensorflow.converter.ConverterContext
        :type descriptor: ConcatLayerResolver.Descriptor
        :rtype: int
        """
        input_names = self.get_input_names(converter_context, descriptor, input_descriptors)
        if len(input_names) < 2:
            raise ConverterError(code_to_message.get_message('ERROR_TF_ADD_N_NUM_OF_INPUTS')(descriptor.layer_name))
        output_name = descriptor.output_names[0]
        current_input_names = [input_names[0], input_names[1]]
        current_output_name = descriptor.layer_name + '_unroll_1'
        converter_context.model.add_elementwise_sum_layer(descriptor.layer_name + '_unroll_1',
                                                          [1.0 for _ in current_input_names],
                                                          current_input_names,
                                                          current_output_name)

        for input_index in range(2, len(input_names) - 1):
            current_input_names = [current_output_name, input_names[input_index]]
            current_output_name = descriptor.layer_name + '_unroll_' + str(input_index)
            converter_context.model.add_elementwise_sum_layer(descriptor.layer_name + '_unroll_' + str(input_index),
                                                              [1.0 for _ in current_input_names],
                                                              current_input_names,
                                                              current_output_name)
        current_input_names = [current_output_name, input_names[-1]]
        return converter_context.model.add_elementwise_sum_layer(descriptor.layer_name,
                                                                 [1.0 for _ in current_input_names],
                                                                 current_input_names,
                                                                 output_name)
Esempio n. 16
0
 def _resolve_score_threshold(cls, nms_ops_map, nms_scope, graph_helper):
     score_threshold_op_name = '{}/map/while/MultiClassNonMaxSuppression/FilterGreaterThan/Greater/y' \
         .format(nms_scope)
     score_threshold_op = nms_ops_map.get(score_threshold_op_name, None)
     if score_threshold_op is None:
         raise ConverterError(get_message('ERROR_TF_SSD_NMS_CAN_NOT_RESOLVE_SCORE_THRESHOLD'))
     score_threshold = float(graph_helper.evaluate_tensor_output(score_threshold_op.outputs[0]))
     return score_threshold
Esempio n. 17
0
 def _resolve_iou_threshold(cls, nms_ops_map, nms_scope, graph_helper):
     nms_op_name = '{}/map/while/MultiClassNonMaxSuppression/non_max_suppression/NonMaxSuppressionV2' \
         .format(nms_scope)
     nms_op = nms_ops_map.get(nms_op_name, None)
     if nms_op is None:
         raise ConverterError(get_message('ERROR_TF_SSD_NMS_CAN_NOT_RESOLVE_IOU'))
     _, _, _, iou_tensor = graph_helper.get_op_input_tensors(nms_op, ('?', '?', '?', 'Const'))
     iou_threshold = float(graph_helper.evaluate_tensor_output(iou_tensor))
     return iou_threshold
Esempio n. 18
0
 def get_weights(self, graph_helper, conv_op):
     _, weights_tensor = GraphHelper.get_op_input_tensors(
         conv_op, ('?', '?'))
     if weights_tensor.op.type not in ['Identity', 'Const', 'Split']:
         raise ConverterError(
             code_to_message.get_message('ERROR_TF_CONV_RESOLVE_WEIGHTS')(
                 conv_op.name))
     weights = graph_helper.evaluate_tensor_output(weights_tensor)
     return weights
Esempio n. 19
0
 def get_biases(self, graph_helper, conv_op, bias_op):
     _, biases_tensor = GraphHelper.get_op_input_tensors(
         bias_op, ('?', '?'))
     if biases_tensor.op.type not in ['Identity', 'Const']:
         raise ConverterError(
             code_to_message.get_message('ERROR_TF_CONV_RESOLVE_BIAS')(
                 conv_op.name))
     biases = graph_helper.evaluate_tensor_output(biases_tensor)
     return biases
Esempio n. 20
0
    def resolve_layer(self, graph_matcher, graph_helper):
        descriptors = []

        for match in graph_matcher.match_sequence(self.sequence):
            strided_slice_op = match['root']
            input_op = match['input']

            if input_op.type == "Const":
                continue

            begin_op = match['begin']
            end_op = match['end']
            strides_op = match['strides']

            begin_tensor = graph_helper.evaluate_tensor_output(
                begin_op.outputs[0])
            end_tensor = graph_helper.evaluate_tensor_output(end_op.outputs[0])
            strides_tensor = graph_helper.evaluate_tensor_output(
                strides_op.outputs[0])
            input_tensor = graph_helper.evaluate_tensor_output(
                input_op.outputs[0])

            begin_shape = graph_helper.get_op_output_shape(begin_op)
            end_shape = graph_helper.get_op_output_shape(end_op)
            strides_shape = graph_helper.get_op_output_shape(strides_op)
            input_shape = graph_helper.get_op_output_shape(input_op)

            if begin_shape != end_shape or begin_shape != strides_shape:
                raise ConverterError(
                    code_to_message.get_message(
                        'ERROR_TF_STRIDED_SLICE_SHAPE_MISMATCH'))

            begin_mask = strided_slice_op.get_attr("begin_mask")
            end_mask = strided_slice_op.get_attr("end_mask")
            ellipsis_mask = strided_slice_op.get_attr("ellipsis_mask")
            new_axis_mask = strided_slice_op.get_attr("new_axis_mask")
            shrink_axis_mask = strided_slice_op.get_attr("shrink_axis_mask")

            consumed_nodes = match.consumed_nodes
            pad_descriptor = StridedSliceLayerResolver.Descriptor(
                str(strided_slice_op.name),
                consumed_nodes,
                input_shape,
                begin_tensor,
                end_tensor,
                strides_tensor,
                begin_mask,
                end_mask,
                ellipsis_mask,
                new_axis_mask,
                shrink_axis_mask,
                output_names=[str(strided_slice_op.outputs[0].name)])
            descriptors.extend([pad_descriptor])

        return descriptors
Esempio n. 21
0
    def resolve_layer(self, graph_matcher, graph_helper):
        matches = graph_matcher.match_sequence(self.graph_sequence)
        if len(matches) == 0:
            return []
        descriptor = []
        for match in matches:
            conv_op = match['conv_op']
            strides = conv_op.get_attr(self.TF_ATTRIBUTE_STRIDES)
            padding = conv_op.get_attr(self.TF_ATTRIBUTE_PADDING)
            weights = self.get_weights(graph_helper, conv_op)
            weights = np.transpose(weights, [0, 1, 3, 2])
            consumed_nodes = match.consumed_nodes
            output_op_nodes_names = [
                str(match[node.identifier].outputs[0].name)
                for node in self.graph_sequence.output_nodes
            ]
            try:
                batch_to_space_op = match['batch_to_space']
                conv_output_ops = graph_helper.get_op_outputs(
                    batch_to_space_op)
                bias_op = GraphHelper.filter_single_op_by_type(
                    conv_output_ops, 'BiasAdd')
                biases = self.get_biases(graph_helper, conv_op, bias_op)
                consumed_nodes.append(bias_op)
                output_op_nodes_names = [str(bias_op.outputs[0].name)]
            except OperationNotFoundError:
                bias_op = None
                biases = np.zeros(np.shape(weights)[-1], dtype=np.float32)
            dilation_sizes = match['dilation_sizes']
            dilation_sizes = graph_helper.evaluate_tensor_output(
                dilation_sizes.outputs[0])
            if np.shape(dilation_sizes) != (2, ):
                raise ConverterError(
                    code_to_message.get_message(
                        'ERROR_TF_CONV_RESOLVE_DILATION')(conv_op.name))

            d = ConvolutionLayerResolver.Descriptor(
                str(conv_op.name),
                consumed_nodes,
                conv_op,
                bias_op,
                strides,
                padding,
                weights,
                biases,
                output_names=output_op_nodes_names)

            space_to_batch_op = match['space_to_batch']
            d.groups = graph_helper.get_op_output_shape(space_to_batch_op)[-1]
            d.dilationY = int(dilation_sizes[0])
            d.dilationX = int(dilation_sizes[1])
            d.input_ops = [space_to_batch_op]
            descriptor.append(d)
        return descriptor
Esempio n. 22
0
    def __import_from_meta_graph(cls, meta_graph_path, graph_path,
                                 out_nodes_names):
        """
        :type meta_graph_path: str
        :type graph_path: str
        :type out_nodes_names: list[str]
        :rtype: tensorflow.GraphDef
        """
        session = tf.Session(graph=tf.Graph())
        with session.graph.as_default():
            try:
                saver = tf.train.import_meta_graph(meta_graph_path)
            except AssertionError, e:
                raise ConverterError(
                    code_to_message.get_message(
                        'ERROR_TF_CANNOT_IMPORT_GRAPH_FROM_META')(e.message))

            if saver is None:
                raise ConverterError(
                    code_to_message.get_message('ERROR_TF_GRAPH_META_EMPTY'))
            saver.restore(session, graph_path)
Esempio n. 23
0
    def resolve_layer(self, graph_matcher, graph_helper):
        matches = graph_matcher.match_sequence(self.sequence)
        if len(matches) == 0:
            return []
        descriptors = []
        for match in matches:
            matmul_op = match['matmul_op']
            weights_op = match['weights']
            if weights_op.type not in ['Identity', 'Const']:
                raise ConverterError(
                    code_to_message.get_message(
                        'ERROR_TF_MATMUL_RESOLVE_WEIGHTS')(matmul_op.name))
            weights = graph_helper.evaluate_tensor_output(
                weights_op.outputs[0])

            bias_add_op = match['bias_op']
            biases_op = match['biases']
            if biases_op.type not in ['Identity', 'Const']:
                # do we still need this check ?
                raise ConverterError(
                    code_to_message.get_message('ERROR_TF_MATMUL_RESOLVE_BIAS')
                    (bias_add_op.name))
            biases = graph_helper.evaluate_tensor_output(biases_op.outputs[0])
            consumed_nodes = match.consumed_nodes
            output_op_nodes_names = [
                str(match[node.identifier].outputs[0].name)
                for node in self.sequence.output_nodes
            ]
            descriptors.append(
                FullyConnectedLayerResolver.Descriptor(
                    str(matmul_op.name),
                    consumed_nodes,
                    matmul_op,
                    bias_add_op,
                    weights,
                    biases,
                    output_names=output_op_nodes_names))
        return descriptors
Esempio n. 24
0
    def _assert_all_ops_consumed(self, descriptors, graph_ops):
        graph_ops = self._filter_unconsumed_ops(descriptors, graph_ops)

        def is_parameter_op(o):
            return o.type in ['Const', 'Identity', 'Variable']

        remaining_ops = [op for op in graph_ops if not is_parameter_op(op)]
        for op in remaining_ops:
            self._logger.warning(
                code_to_message.get_warning_message(
                    'WARNING_TF_SCOPE_OP_NOT_CONSUMED')(op.name, op.type))
        if len(remaining_ops) > 0:
            raise ConverterError(
                code_to_message.get_message(
                    'ERROR_TF_OPERATION_NOT_MAPPED_TO_LAYER'))
Esempio n. 25
0
    def build_layer(self, converter_context, descriptor, input_descriptors, output_descriptors):
        """
        :type input_descriptors: [converters.tensorflow.common.LayerDescriptor]
        :type output_descriptors: [converters.tensorflow.common.LayerDescriptor]
        :type converter_context: converters.tensorflow.converter.ConverterContext
        :type descriptor: ConcatLayerResolver.Descriptor
        :rtype: int
        """
        if len(input_descriptors) != 2:
            raise ConverterError(get_message('ERROR_TF_SSD_NMS_REQUIRES_2_INPUTS'))

        input_names = []
        input_shapes = []
        for i in input_descriptors:
            tensors = converter_context.get_output_tensors_between(i, descriptor)
            if len(tensors) != 1:
                raise ConverterError(get_message('ERROR_TF_SSD_NMS_REQUIRES_SINGLE_INPUT_TENSOR'))

            input_shapes.append(converter_context.graph_helper.get_op_output_shape(tensors[0].op))

        for index, shape in enumerate(input_shapes):
            output_names = input_descriptors[index].output_names
            if len(shape) == 3 and shape[-1] == 4:
                input_names = output_names + input_names
            else:
                input_names.extend(output_names)

        classes_shape = converter_context.graph_helper.get_op_output_shape(descriptor.classes_output_op)

        return converter_context.model.add_multi_class_nms_layer(name=descriptor.layer_name,
                                                                 input_names=input_names,
                                                                 output_names=descriptor.output_names,
                                                                 scoreThreshold=descriptor.score_threshold,
                                                                 iouThreshold=descriptor.iou_threshold,
                                                                 maxDetectionPerClass=classes_shape[-1],
                                                                 maxTotalDetections=classes_shape[-1])
Esempio n. 26
0
    def get_input_names(cls, converter_context, descriptor, input_descriptors):
        """
        :type converter_context: converters.tensorflow.converter.ConverterContext
        :type input_descriptors: [LayerDescriptor]
        :type descriptor: LayerDescriptor
        :rtype: str
        """
        input_names = []
        for d in input_descriptors:
            input_tensors = converter_context.get_output_tensors_between(d, descriptor)
            input_names.extend(d.get_output_names_for(input_tensors))

        if len(input_names) == 0:
            raise ConverterError(code_to_message.get_message('ERROR_TF_LAYER_NO_INPUT_FOUND')(
                descriptor.layer_type, descriptor.layer_name))
        return input_names
Esempio n. 27
0
    def build_layer(self, converter_context, descriptor, input_descriptors,
                    output_descriptors):
        """
        :type input_descriptors: [converters.tensorflow.common.LayerDescriptor]
        :type output_descriptors: [converters.tensorflow.common.LayerDescriptor]
        :type converter_context: converters.tensorflow.converter.ConverterContext
        :type descriptor: DeConvolutionLayerResolver.Descriptor
        :rtype: int
        """
        input_dims = converter_context.graph_helper.get_op_output_shape(
            descriptor.input_tensor.op)
        if descriptor.bias_op:
            output_dims = converter_context.graph_helper.get_op_output_shape(
                descriptor.bias_op)
        else:
            output_dims = converter_context.graph_helper.get_op_output_shape(
                descriptor.deconv_op)

        pad_y, pad_x, padding_strategy = ConvolutionLayerBuilder.calculate_padding_size(
            input_size=output_dims[-3:-1],
            output_size=input_dims[-3:-1],
            strides=descriptor.strides[1:3],
            padding=descriptor.padding,
            filter_dims=descriptor.weights.shape,
            dilation=[1, 1])
        if pad_y != pad_x:
            raise ConverterError(
                code_to_message.get_message(
                    'ERROR_TF_DECONV_NO_SUPPORT_RECT_PADDING'))

        weights = np.transpose(descriptor.weights, (0, 1, 3, 2)).copy()

        input_names = self.get_input_name(converter_context, descriptor,
                                          input_descriptors)
        return converter_context.model.add_deconvolution_layer(
            name=descriptor.layer_name,
            weights=weights,
            bias=descriptor.biases,
            stride=descriptor.strides[1],
            padding_size_strategy=padding_strategy,
            padding=pad_y,
            input_name=input_names,
            output_name=descriptor.output_names[0],
            output_width=output_dims[-2],
            output_height=output_dims[-3],
            groups=1)
Esempio n. 28
0
    def build_layer(self, converter_context, descriptor, input_descriptors,
                    output_descriptors):
        """
        :type input_descriptors: [converters.tensorflow.common.LayerDescriptor]
        :type output_descriptors: [converters.tensorflow.common.LayerDescriptor]
        :type converter_context: converters.tensorflow.converter.ConverterContext
        :type descriptor: ConcatLayerResolver.Descriptor
        :rtype: int
        """
        if len(input_descriptors) < 2:
            raise ConverterError(
                code_to_message.get_message('ERROR_TF_CONCAT_INPUT'))

        input_names = self.get_input_names(converter_context, descriptor,
                                           input_descriptors)
        return converter_context.model.add_concatenation_layer(
            descriptor.layer_name, input_names, descriptor.output_names[0],
            descriptor.axis)
Esempio n. 29
0
    def resolve_layer(self, graph_matcher, graph_helper):
        descriptors = []
        for sequence in self.sequences:
            for match in graph_matcher.match_sequence(sequence):
                pow_op = match['pow']
                const_values_op = match['const']
                const_values = graph_helper.evaluate_tensor_output(const_values_op.outputs[0])

                # only scalar power op is supported
                if not np.isscalar(const_values):
                    raise ConverterError(code_to_message.get_message('ERROR_TF_POW_CONSTANT_NOT_SCALAR'))

                consumed_nodes = match.consumed_nodes
                pow_descriptor = PowLayerResolver.Descriptor(
                    str(pow_op.name), consumed_nodes, 1, 0, const_values,
                    output_names=[str(pow_op.outputs[0].name)])
                descriptors.extend([pow_descriptor])

        return descriptors
Esempio n. 30
0
    def _evaluate_tensor_shapes(self, ops):
        """
        :type ops: list(tensorflow.Operation)
        :rtype: None
        """
        tensors = set()
        for t in [t for op in ops for t in op.outputs]:
            tensors.add(t)

        for t in [t for op in ops for t in op.inputs]:
            tensors.add(t)

        try:
            self._evaluate_tensors_output_shape(tensors)
        except Exception:
            # If we can't evaluate the graph ops in one pass
            # fallback to on-demand evaluation later
            logger = logging.getLogger()
            logger.warning(
                code_to_message.get_message(
                    'ERROR_TF_FALLBACK_TO_ONDEMAND_EVALUATION'))