Esempio n. 1
0
def imagenet_model_resnet1(N=5, factor=10):
    def block(in_filters, out_filters, k, downsample):
        if not downsample:
            k_first = 3
            skip_stride = 1
            k_skip = 1
        else:
            k_first = 4
            skip_stride = 2
            k_skip = 2
        return [
            Dense(
                nn.Conv2d(in_filters,
                          out_filters,
                          k_first,
                          stride=skip_stride,
                          padding=1)),
            nn.ReLU(),
            Dense(
                nn.Conv2d(in_filters,
                          out_filters,
                          k_skip,
                          stride=skip_stride,
                          padding=0), None,
                nn.Conv2d(out_filters, out_filters, k, stride=1, padding=1)),
            nn.ReLU()
        ]

    conv1 = [nn.Conv2d(3, 16 * factor, 7, stride=2, padding=3), nn.ReLU()]
    conv2 = block(16 * factor, 16 * factor, 3, True)

    for _ in range(N):
        conv2.extend(block(16 * factor, 16 * factor, 3, False))

    conv3 = block(16 * factor, 32 * factor, 3, True)
    for _ in range(N - 1):
        conv3.extend(block(32 * factor, 32 * factor, 3, False))
    conv4 = block(32 * factor, 64 * factor, 3, True)
    for _ in range(N - 1):
        conv4.extend(block(64 * factor, 64 * factor, 3, False))
    layers = (conv1 + conv2 + conv3 + conv4 + [
        Flatten(),
        nn.Linear(64 * factor * 4 * 4, 512),
        nn.ReLU(),
        nn.Linear(512, 200)
    ])
    model = DenseSequential(*layers)

    for m in model.modules():
        if isinstance(m, nn.Conv2d):
            n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            m.weight.data.normal_(0, math.sqrt(2. / n))
            if m.bias is not None:
                m.bias.data.zero_()
    return model
Esempio n. 2
0
def averaging_model(models, output_size=10):
    modules = []
    modules.append(Dense(nn.Sequential()))
    model_layer_counts = []
    for i, model in enumerate(models):
        model_modules = list(model.modules())[1:]
        model_layer_counts.append(len(model_modules))
        modules.append(
            Dense(*([nn.Sequential()] + [None] * (len(modules) - 1))))
        for model_module in model_modules:
            modules.append(model_module)
    combine_modules = []
    combine_modules.append(get_copy_layer(output_size))
    for model_layer_count in model_layer_counts[1:]:
        combine_modules += [None] * model_layer_count
        combine_modules.append(get_copy_layer(output_size))

    modules.append(Dense(*combine_modules))
    modules.append(get_average_layer(output_size, len(models)))

    avg_model = DenseSequential(*modules)
    return avg_model
Esempio n. 3
0
def har_resnet_model():
    model = DenseSequential(Dense(nn.Linear(561, 561)), nn.ReLU(),
                            Dense(nn.Sequential(), None, nn.Linear(561, 561)),
                            nn.ReLU(), nn.Linear(561, 6))
    return model