Esempio n. 1
0
def find_seabreezes(region, start_year, final_year, lcstimelen):
    years = range(start_year, final_year)

    # ---- File reading and formatting ---- #
    departures = read_nc_files(
        region=region,
        basepath='/group_workspaces/jasmin4/upscale/gmpp/convzones/',
        filename='SL_repelling_{year}_departuretimelen' +
        f'_{lcstimelen}_v2.nc',
        year_range=years,
        reverseLat=True).isel(time=slice(None, None))
    ftle_array = read_nc_files(
        region=region,
        basepath='/group_workspaces/jasmin4/upscale/gmpp/convzones/',
        filename='SL_repelling_{year}_lcstimelen' + f'_{lcstimelen}_v2.nc',
        year_range=years).isel(time=slice(None, None))
    landSea_mask = xr.open_dataarray(
        '/gws/nopw/j04/primavera1/observations/ERA5/landSea_mask.nc')
    landSea_mask = landSea_mask.squeeze('time').drop('time')
    landSea_mask.coords['longitude'] = (
        landSea_mask.coords['longitude'].values + 180) % 360 - 180
    landSea_mask = landSea_mask.sortby('latitude').sortby('longitude')
    landSea_mask = landSea_mask.interp_like(ftle_array, method='nearest')
    landSea_mask.values = landSea_mask.values.round(0)

    departures.coords['time'] = \
        pd.date_range(start=f"{start_year}-01-01T00:00:00",
                      periods=departures.time.shape[0], freq='6H')

    departures = departures.sortby('latitude')

    ftle_array = xr.apply_ufunc(lambda x: np.log(x), ftle_array**0.5)
    threshold = ftle_array.quantile(0.6)

    dep_x, dep_y = departures.x_departure, departures.y_departure

    dep_lat, dep_lon = dep_y.where(ftle_array > threshold,
                                   np.nan), dep_x.where(
                                       ftle_array > threshold, np.nan)
    # dep_lat = dep_y.copy(data=dep_lat)
    # dep_lon = dep_x.copy(data=dep_lon)
    dep_mask = xr.full_like(dep_x, 1)

    # Selecting only continental points (sort of)
    dep_lat = dep_lat.where(landSea_mask == 1, drop=True)
    dep_lon = dep_lon.where(landSea_mask == 1, drop=True)
    times = dep_lat.time.values
    array_list = apply_binary_mask(times, dep_lat, dep_lon, landSea_mask)

    seabreeze = dep_lat.copy(data=np.stack(array_list))
    breezetime = seabreeze.where(
        seabreeze == 1, drop=True).groupby('time.hour').sum('time').stack(
            points=['latitude', 'longitude']).groupby('points').apply(
                np.argmax).unstack()
    # seabreeze = dep_lat.groupby('time').apply(dummy)
    seabreeze.to_netcdf(
        f'/group_workspaces/jasmin4/upscale/gmpp/convzones/seabreeze_{start_year}_{final_year}_{region}_lcstimelen_{lcstimelen}.nc'
    )
    return seabreeze
Esempio n. 2
0
def filter(region, years):
    ftle_array = read_nc_files(
        region=region,
        basepath='/group_workspaces/jasmin4/upscale/gmpp/convzones/',
        filename='SL_repelling_{year}_lcstimelen_1.nc',
        year_range=years)
    ftle_array = ftle_array.expand_dims('dummy')
    encoder = xru.autoencoder(n_components=7,
                              dims_to_reduce=['dummy'],
                              alongwith=['time'],
                              mode='emd',
                              parallel=True).fit(ftle_array)
    transformed = encoder.transform(ftle_array)
    transformed = transformed.transpose('time', 'dim_to_groupby',
                                        'encoded_dims')
    new_values = transformed.values.reshape(transformed.shape[0],
                                            ftle_array.shape[2],
                                            ftle_array.shape[3],
                                            transformed.shape[2])
    new_array = xr.DataArray(new_values,
                             dims=['time', 'latitude', 'longitude', 'modes'],
                             coords=[
                                 transformed.time.values,
                                 ftle_array.latitude.values,
                                 ftle_array.longitude.values,
                                 transformed.encoded_dims.values
                             ])
Esempio n. 3
0
import os
if __name__ == '__main__':
    region = 'SACZ_big'
    years = range(1995, 2005)
    lcstimelen = 16
    basin = 'Uruguai'
    season = 'DJF'

    basin_origin = 'amazon'
    MAG = xr.open_dataset('~/phdlib/convlib/data/xarray_mair_grid_basins.nc')
    mask = MAG[basin]
    departures = read_nc_files(
        region=region,
        basepath='/group_workspaces/jasmin4/upscale/gmpp/convzones/',
        filename='SL_repelling_{year}_departuretimelen' +
        f'_{lcstimelen}_v2.nc',
        year_range=years,
        season=season,
        set_date=True,
        lcstimelen=lcstimelen,
        binary_mask=mask)
    ftle_array = read_nc_files(
        region=region,
        basepath='/group_workspaces/jasmin4/upscale/gmpp/convzones/',
        filename='SL_repelling_{year}_lcstimelen' + f'_{lcstimelen}_v2.nc',
        year_range=years,
        season=season,
        binary_mask=mask,
        lcstimelen=lcstimelen,
        set_date=True)
    pr = read_nc_files(region=region,
                       basepath='/gws/nopw/j04/primavera1/observations/ERA5/',
Esempio n. 4
0
    def _identify_features(self, array):
        array = (array - array.min()) / array.max()
        for time in array.time.values:
            array2D = array.sel(time=time).values
            array2D.shape()
            blobs_doh = blob_doh(array2D, max_sigma=30, threshold=.01)
            print(';a')

        pass

    def track(self, array):
        identified_array = self._identify_features(array)


if __name__ == '__main__':
    array = read_nc_files(year_range=range(2000, 2001))
    array = array.sel(latitude=slice(-30, None),
                      longitude=slice(-60, -30),
                      time=slice(None, 10))
    threshold = array.quantile(0.7)
    array = array.where(array > threshold, 0)
    array = array.where(array < threshold, 1)

    #labeled_array = xr.apply_ufunc(lambda x: measure.label(x), array)
    labeled_array = xr.apply_ufunc(lambda x: measure.label(x),
                                   array.groupby('time'))
    array = array.expand_dims(groups=np.unique(labeled_array.values))

    array_of_sizes = np.zeros(
        [len(array.time.values),
         len(array.groups.values)])
Esempio n. 5
0
region = 'SACZ_big'
years = range(2020, 2021)
lcstimelen = 6

basin = 'Tiete'
season = 'DJF'
MAG = xr.open_dataset('data/xarray_mair_grid_basins.nc')
MAG = MAG[basin]
MAG = MAG.rename({'lat': 'latitude', 'lon': 'longitude'})
datapath_local = '/home/gab/phd/data/'

ftle_array = read_nc_files(region=region,
                           basepath=datapath_local + 'FTLE_ERA5/',
                           filename='SL_attracting_{year}_lcstimelen' +
                           f'_{lcstimelen}_v2.nc',
                           year_range=years,
                           season=None,
                           lcstimelen=lcstimelen,
                           set_date=True)
ftle_array = xr.apply_ufunc(lambda x: np.log(x), ftle_array**
                            0.5) * 6 / lcstimelen
#ftle_array.roll(time=-2, roll_coords=False)
u = read_nc_files(region={
    'latitude': slice(10, -70),
    'longitude': slice(-100, -1)
},
                  basepath=datapath_local + '/ERA5/ERA5',
                  filename='viwve_ERA5_6hr_{year}010100-{year}123118.nc',
                  year_range=years,
                  transformLon=True,
                  reverseLat=False,
Esempio n. 6
0
import xarray as xr
from convlib.xr_tools import read_nc_files, createDomains
import numpy as np

area = {'latitude': slice(-15, -10), 'longitude': slice(-50, -38)}
region = "SACZ_big"
years = range(1995, 2005)
lcstimelen = 8  # 8
season = "DJF"
CZ = 1

ftle_array = read_nc_files(
    region=region,
    basepath='/group_workspaces/jasmin4/upscale/gmpp/convzones/',
    filename='SL_repelling_{year}_lcstimelen' + f'_{lcstimelen}_v2.nc',
    year_range=years,
    season=season)

ftle_array = xr.apply_ufunc(lambda x: np.log(x), ftle_array**0.5)

ftle_array = ftle_array.sel(area).groupby('time').mean()

ftle_array.to_netcdf('/home/users/gmpp/sacz_index.nc')
Esempio n. 7
0
        axarr[2].coastlines()
        # axarr.add_feature(states_provinces, edgecolor='gray')
        plt.savefig(f'./tempfigs/SL{time}.png')
        plt.close()


domains = dict(AITCZ=dict(latitude=slice(-5, 15), longitude=slice(-50, -13)),
               SACZ=dict(latitude=slice(-40, -5), longitude=slice(-62, -20)))

if __name__ == '__main__':
    region = "SACZ_small"
    lcs_time_len = 1

    arr1 = read_nc_files(
        region=region,
        basepath='/group_workspaces/jasmin4/upscale/gmpp/convzones/',
        filename='SL_repelling_{year}' + f'_lcstimelen_1_v2.nc',
        year_range=range(1990, 2000))
    arr4 = read_nc_files(
        region=region,
        basepath='/group_workspaces/jasmin4/upscale/gmpp/convzones/',
        filename='SL_repelling_{year}' + f'_lcstimelen_4_v2.nc',
        year_range=range(1990, 2000))

    # arr = xr.open_dataarray('/home/users/gmpp/out/SL_repelling_1980_1998.nc')
    sel_hour = 0
    hours = [pd.to_datetime(x).hour for x in arr.time.values]
    #arr = xr.apply_ufunc(lambda x: np.log(x), arr ** 0.5)

    array_mean = arr.where(
        np.array(hours).reshape(arr.shape[0], 1, 1) == sel_hour).groupby(
Esempio n. 8
0
def seabreeze():
    region = 'NEBR'

    lcstimelen = 1
    vmin = 0
    vmax = 0.6
    start_year, final_year = 1995, 1996
    years = range(start_year, final_year)
    # seabreeze = xr.open_dataarray(f'/group_workspaces/jasmin4/upscale/gmpp/convzones/seabreeze_{start_year}_{final_year}_{region}.nc')

    seabreeze = find_seabreezes(region, start_year, final_year, lcstimelen)
    pr_array = read_nc_files(
        region=region,
        basepath='/gws/nopw/j04/primavera1/observations/ERA5/',
        filename='pr_ERA5_6hr_{year}010100-{year}123118.nc',
        year_range=years,
        transformLon=True,
        reverseLat=True)

    pr_array = pr_array.sortby('latitude') * 6 * 3600  # total mm in 6h

    pr_array = pr_array.sel(latitude=seabreeze.latitude,
                            longitude=seabreeze.longitude,
                            time=seabreeze.time,
                            method='nearest')
    masked_precip = pr_array.where(seabreeze == 1, 0)
    #
    # for time in seabreeze.time:
    #     fig = plt.figure(figsize=[10, 10])
    #     gs = gridspec.GridSpec(1, 1, width_ratios=[1])
    #
    #     axs = {'mask': fig.add_subplot(gs[0, 0], projection=proj)}
    #
    #     seabreeze.sel(time=time).plot(transform=ccrs.PlateCarree(), add_colorbar=True,
    #                                   ax=axs['mask'], vmin=0, vmax=1)
    #     axs['mask'].add_feature(cfeature.NaturalEarthFeature(
    #         'cultural', 'admin_1_states_provinces_lines', scale='50m',
    #         edgecolor='gray', facecolor='none'))
    #     axs['mask'].add_feature(cfeature.RIVERS)
    #     axs['mask'].add_feature(cfeature.COASTLINE)
    #     plt.savefig('tempfigs/seabreeze/{}.png'.format(time.values))
    #     plt.close()

    prec_frac = masked_precip.groupby('time.hour').sum(
        'time') / pr_array.groupby('time.hour').sum('time')
    total = 4 * seabreeze.groupby('time.hour').sum(
        'time') / seabreeze.time.values.shape[0]
    prec_frac = prec_frac / total
    # total = total - total.mean('hour')

    hours = total.hour.values
    proj = ccrs.PlateCarree()

    fig = plt.figure(figsize=[20, 20])
    gs = gridspec.GridSpec(2, 3, width_ratios=[1, 1, 0.05])
    axs = {}
    axs[hours[0]] = fig.add_subplot(gs[0, 0], projection=proj)
    axs[hours[1]] = fig.add_subplot(gs[0, 1], projection=proj)
    axs[hours[2]] = fig.add_subplot(gs[1, 0], projection=proj)
    axs[hours[3]] = fig.add_subplot(gs[1, 1], projection=proj)

    # Disable axis ticks
    for ax in axs.values():
        ax.tick_params(bottom=False,
                       labelbottom=False,
                       left=False,
                       labelleft=False)

    # Add titles
    for name, ax in axs.items():
        ax.set_title(name)

    for hour in hours:
        plot = prec_frac.sel(hour=hour).plot.contourf(
            ax=axs[hour],
            transform=ccrs.PlateCarree(),
            add_colorbar=False,
            add_labels=False,
            levels=5,
            vmax=4,
            vmin=0,
            cmap='Blues')
        CS = total.sel(hour=hour).plot.contour(ax=axs[hour],
                                               levels=5,
                                               vmin=vmin,
                                               vmax=vmax,
                                               cmap="Reds")
        axs[hour].clabel(CS, inline=True, fontsize=15)
        axs[hour].coastlines(color='black')
        axs[hour].add_feature(
            cfeature.NaturalEarthFeature('cultural',
                                         'admin_1_states_provinces_lines',
                                         scale='50m',
                                         edgecolor='gray',
                                         facecolor='none'))
    cbar_gs = gridspec.GridSpecFromSubplotSpec(1,
                                               1,
                                               subplot_spec=gs[:, 2],
                                               wspace=2.5)
    cax = fig.add_subplot(cbar_gs[0])
    plt.colorbar(plot, cax)
    plt.savefig(
        f'tempfigs/seabreeze/seabreeze_{region}_lcstimelen_{lcstimelen}.png')
    plt.close()

    total.stack(points=['latitude', 'longitude']).mean('points').plot()
    plt.savefig('tempfigs/seabreeze/ciclo_diurno.png')
Esempio n. 9
0
def precip_fraction(region, years):
    if region == 'AITCZ':
        proj = ccrs.PlateCarree()
        figsize1 = (20, 11)
        figsize2 = (30, 20)
    elif 'SACZ' in region:
        figsize1 = (20, 11)
        figsize2 = (20, 20)
        proj = ccrs.Orthographic(-40, -20)

    print('*---- Reading files ----*')
    ftle_array = read_nc_files(
        region=region,
        basepath='/group_workspaces/jasmin4/upscale/gmpp/convzones/',
        filename='SL_repelling_{year}_lcstimelen_1.nc',
        year_range=years)

    pr_array = read_nc_files(
        region=region,
        basepath='/gws/nopw/j04/primavera1/observations/ERA5/',
        filename='pr_ERA5_6hr_{year}010100-{year}123118.nc',
        year_range=years,
        transformLon=True,
        reverseLat=True)
    pr_array = pr_array.sortby('latitude') * 6 * 3600  # total mm in 6h

    ftle_array = xr.apply_ufunc(lambda x: np.log(x), ftle_array**0.5)

    threshold = ftle_array.quantile(0.6)
    pr_array = pr_array.sel(latitude=ftle_array.latitude,
                            longitude=ftle_array.longitude,
                            method='nearest')
    masked_precip = pr_array.where(ftle_array > threshold, 0)

    # ------ Total precip ------ #
    fig = plt.figure(figsize=figsize1)
    gs = gridspec.GridSpec(1, 3, width_ratios=[1, 1, 0.02])
    axs = {}

    axs['Total'] = fig.add_subplot(gs[0, 0], projection=proj)
    axs['Conv. zone events'] = fig.add_subplot(gs[0, 1], projection=proj)

    # Disable axis ticks
    for ax in axs.values():
        ax.tick_params(bottom=False,
                       labelbottom=False,
                       left=False,
                       labelleft=False)

    # Add titles
    for name, ax in axs.items():
        ax.set_title(name)
    vmin = 0
    vmax = pr_array.sum('time').quantile(0.95)

    masked_precip.sum('time').plot(ax=axs['Conv. zone events'],
                                   transform=ccrs.PlateCarree(),
                                   add_colorbar=False,
                                   add_labels=False,
                                   vmin=vmin,
                                   vmax=vmax,
                                   cmap='nipy_spectral')
    total = pr_array.sum('time').plot(ax=axs['Total'],
                                      transform=ccrs.PlateCarree(),
                                      add_colorbar=False,
                                      add_labels=False,
                                      vmin=vmin,
                                      vmax=vmax,
                                      cmap='nipy_spectral')
    axs['Total'].coastlines(color='black')
    axs['Conv. zone events'].coastlines(color='black')
    cbar_gs = gridspec.GridSpecFromSubplotSpec(1,
                                               1,
                                               subplot_spec=gs[:, 2],
                                               wspace=2.5)
    cax = fig.add_subplot(cbar_gs[0])
    plt.colorbar(total, cax)
    plt.savefig(f'tempfigs/diagnostics/total_{region}.png')
    plt.close()

    # ---- Seasonal plots ---- #
    fraction = masked_precip / pr_array
    fraction = fraction.groupby('time.season').mean('time')
    seasons = fraction.season.values

    fig = plt.figure(figsize=figsize2)
    gs = gridspec.GridSpec(2, 3, width_ratios=[1, 1, 0.05])
    axs = {}
    axs[seasons[0]] = fig.add_subplot(gs[0, 0], projection=proj)
    axs[seasons[1]] = fig.add_subplot(gs[0, 1], projection=proj)
    axs[seasons[2]] = fig.add_subplot(gs[1, 0], projection=proj)
    axs[seasons[3]] = fig.add_subplot(gs[1, 1], projection=proj)

    # Disable axis ticks
    for ax in axs.values():
        ax.tick_params(bottom=False,
                       labelbottom=False,
                       left=False,
                       labelleft=False)

    # Add titles
    for name, ax in axs.items():
        ax.set_title(name)
    vmin = 0
    vmax = fraction.quantile(0.99)

    for season in seasons:
        plot = fraction.sel(season=season).plot(ax=axs[season],
                                                transform=ccrs.PlateCarree(),
                                                add_colorbar=False,
                                                add_labels=False,
                                                vmin=vmin,
                                                vmax=vmax,
                                                cmap='nipy_spectral')
        axs[season].coastlines(color='black')

    cbar_gs = gridspec.GridSpecFromSubplotSpec(1,
                                               1,
                                               subplot_spec=gs[:, 2],
                                               wspace=2.5)
    cax = fig.add_subplot(cbar_gs[0])
    plt.colorbar(plot, cax)
    plt.savefig(f'tempfigs/diagnostics/seasons_{region}.png')
    plt.close()