Esempio n. 1
0
def convert():
    args = parser.parse_args()

    switch_conv_bn_impl('DBB')
    switch_deploy_flag(False)
    train_model = build_model(args.arch)

    if 'hdf5' in args.load:
        from utils import model_load_hdf5
        model_load_hdf5(train_model, args.load)
    elif os.path.isfile(args.load):
        print("=> loading checkpoint '{}'".format(args.load))
        checkpoint = torch.load(args.load)
        if 'state_dict' in checkpoint:
            checkpoint = checkpoint['state_dict']
        checkpoint = copy.deepcopy(checkpoint)
        ckpt = {k.replace('module.', ''): v
                for k, v in checkpoint.items()}  # strip the names
        train_model.load_state_dict(ckpt)
    else:
        print("=> no checkpoint found at '{}'".format(args.load))

    for m in train_model.modules():
        if hasattr(m, 'switch_to_deploy'):
            m.switch_to_deploy()

    torch.save(train_model.state_dict(), args.save)
def main(arch, model_path, output_path, input_shape=(224, 224), batch_size=1):
    switch_conv_bn_impl('DBB')
    switch_deploy_flag(True)
    model = build_model(arch)
    model.load_state_dict(torch.load(model_path))
    dummy_input = torch.autograd.Variable(
        torch.randn(batch_size, 3, input_shape[0], input_shape[1]))
    torch.onnx.export(model,
                      dummy_input,
                      output_path,
                      verbose=True,
                      keep_initializers_as_inputs=True,
                      opset_version=12)
    onnx_model = onnx.load(output_path)  # load onnx model
    model_simp, check = simplify(onnx_model)
    assert check, "Simplified ONNX model could not be validated"
    onnx.save(model_simp, output_path)
    print('finished exporting onnx ')
Esempio n. 3
0
def test():
    args = parser.parse_args()

    switch_deploy_flag(args.mode == 'deploy')
    switch_conv_bn_impl(args.blocktype)
    model = build_model(args.arch)

    if not torch.cuda.is_available():
        print('using CPU, this will be slow')
        use_gpu = False
    else:
        model = model.cuda()
        use_gpu = True

    # define loss function (criterion) and optimizer
    criterion = torch.nn.CrossEntropyLoss().cuda()

    if 'hdf5' in args.weights:
        from utils import model_load_hdf5
        model_load_hdf5(model, args.weights)
    elif os.path.isfile(args.weights):
        print("=> loading checkpoint '{}'".format(args.weights))
        checkpoint = torch.load(args.weights)
        if 'state_dict' in checkpoint:
            checkpoint = checkpoint['state_dict']
        ckpt = {k.replace('module.', ''): v
                for k, v in checkpoint.items()}  # strip the names
        model.load_state_dict(ckpt)
    else:
        print("=> no checkpoint found at '{}'".format(args.weights))

    cudnn.benchmark = True

    # Data loading code
    valdir = os.path.join(args.data, 'val')

    val_loader = torch.utils.data.DataLoader(datasets.ImageFolder(
        valdir, val_preprocess(224)),
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=True)

    validate(val_loader, model, criterion, use_gpu)
Esempio n. 4
0
def main_worker(gpu, ngpus_per_node, args):
    global best_acc1
    args.gpu = gpu

    if args.gpu is not None:
        print("Use GPU: {} for training".format(args.gpu))

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                world_size=args.world_size, rank=args.rank)

    #   =========================== build model
    from convnet_utils import switch_deploy_flag, switch_conv_bn_impl, build_model
    switch_deploy_flag(False)
    switch_conv_bn_impl(args.blocktype)
    model = build_model(args.arch)

    if gpu == 0:
        for name, param in model.named_parameters():
            print(name, param.size())

    if not torch.cuda.is_available():
        print('using CPU, this will be slow')
    elif args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if args.gpu is not None:
            torch.cuda.set_device(args.gpu)
            model.cuda(args.gpu)
            # When using a single GPU per process and per
            # DistributedDataParallel, we need to divide the batch size
            # ourselves based on the total number of GPUs we have
            args.batch_size = int(args.batch_size / ngpus_per_node)
            args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
            model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        else:
            model.cuda()
            # DistributedDataParallel will divide and allocate batch_size to all
            # available GPUs if device_ids are not set
            model = torch.nn.parallel.DistributedDataParallel(model)
    elif args.gpu is not None:
        torch.cuda.set_device(args.gpu)
        model = model.cuda(args.gpu)
    else:
        # DataParallel will divide and allocate batch_size to all available GPUs
        model = torch.nn.DataParallel(model).cuda()


    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda(args.gpu)

    optimizer = sgd_optimizer(model, args.lr, args.momentum, args.weight_decay)

    lr_scheduler = CosineAnnealingLR(optimizer=optimizer, T_max=args.epochs * IMAGENET_TRAINSET_SIZE // args.batch_size // ngpus_per_node)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            if args.gpu is None:
                checkpoint = torch.load(args.resume)
            else:
                # Map model to be loaded to specified single gpu.
                loc = 'cuda:{}'.format(args.gpu)
                checkpoint = torch.load(args.resume, map_location=loc)
            args.start_epoch = checkpoint['epoch']
            best_acc1 = checkpoint['best_acc1']
            if args.gpu is not None:
                # best_acc1 may be from a checkpoint from a different GPU
                best_acc1 = best_acc1.to(args.gpu)
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['scheduler'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    # Data loading code
    traindir = os.path.join(args.data, 'train')
    valdir = os.path.join(args.data, 'val')

    trans = strong_train_preprocess(224) if 'ResNet' in args.arch else standard_train_preprocess(224)
    print('aug is ', trans)
    train_dataset = datasets.ImageFolder(traindir, trans)

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
    else:
        train_sampler = None

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
        num_workers=args.workers, pin_memory=True, sampler=train_sampler)


    val_dataset = datasets.ImageFolder(valdir, val_preprocess(224))
    val_loader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True)


    if args.evaluate:
        validate(val_loader, model, criterion, args)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        # adjust_learning_rate(optimizer, epoch, args)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch, args, lr_scheduler)

        # evaluate on validation set
        acc1 = validate(val_loader, model, criterion, args)

        # remember best acc@1 and save checkpoint
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if not args.multiprocessing_distributed or (args.multiprocessing_distributed
                and args.rank % ngpus_per_node == 0):
            save_checkpoint({
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'best_acc1': best_acc1,
                'optimizer' : optimizer.state_dict(),
                'scheduler': lr_scheduler.state_dict(),
            }, is_best, filename='{}_{}.pth.tar'.format(args.arch, args.blocktype))