Esempio n. 1
0
    def rvs(self, x, n_curves=1, n_samples=1, T=None):
        # Samples values from this distribution
        # T is optional and means we already observed non-conversion until T
        assert self._ci  # Need to be fit with MCMC
        if T is None:
            T = numpy.zeros((n_curves, n_samples))
        else:
            assert T.shape == (n_curves, n_samples)
        B = numpy.zeros((n_curves, n_samples), dtype=numpy.bool)
        C = numpy.zeros((n_curves, n_samples))
        params = self.params['samples']
        for i, j in enumerate(
                numpy.random.randint(len(params['k']), size=n_curves)):
            k = params['k'][j]
            p = params['p'][j]
            lambd = exp(dot(x, params['alpha'][j]) + params['a'][j])
            c = expit(dot(x, params['beta'][j]) + params['b'][j])
            z = numpy.random.uniform(size=(n_samples, ))
            cdf_now = c * gammainc(k,
                                   numpy.multiply.outer(T[i], lambd)**
                                   p)  # why is this outer?
            adjusted_z = cdf_now + (1 - cdf_now) * z
            B[i] = (adjusted_z < c)
            y = adjusted_z / c
            w = gammaincinv(k, y)
            # x = (t * lambd)**p
            C[i] = w**(1. / p) / lambd
            C[i][~B[i]] = 0

        return B, C
Esempio n. 2
0
def generalized_gamma_LL(x,
                         X,
                         B,
                         T,
                         W,
                         fix_k,
                         fix_p,
                         hierarchical,
                         callback=None):
    k = exp(x[0]) if fix_k is None else fix_k
    p = exp(x[1]) if fix_p is None else fix_p
    log_sigma_alpha = x[2]
    log_sigma_beta = x[3]
    a = x[4]
    b = x[5]
    n_features = int((len(x) - 6) / 2)
    alpha = x[6:6 + n_features]
    beta = x[6 + n_features:6 + 2 * n_features]
    lambd = exp(dot(X, alpha) + a)
    c = expit(dot(X, beta) + b)

    # PDF: p*lambda^(k*p) / gamma(k) * t^(k*p-1) * exp(-(x*lambda)^p)
    log_pdf = log(p) + (k*p) * log(lambd) - gammaln(k) \
              + (k*p-1) * log(T) - (T*lambd)**p
    cdf = gammainc(k, (T * lambd)**p)

    LL_observed = log(c) + log_pdf
    LL_censored = log((1 - c) + c * (1 - cdf))

    LL_data = sum(W * B * LL_observed + W * (1 - B) * LL_censored, 0)

    if hierarchical:
        # Hierarchical model with sigmas ~ invgamma(1, 1)
        LL_prior_a = -4*log_sigma_alpha - 1/exp(log_sigma_alpha)**2 \
                     - dot(alpha, alpha) / (2*exp(log_sigma_alpha)**2) \
                     - n_features*log_sigma_alpha
        LL_prior_b = -4*log_sigma_beta - 1/exp(log_sigma_beta)**2 \
                     - dot(beta, beta) / (2*exp(log_sigma_beta)**2) \
                     - n_features*log_sigma_beta
        LL = LL_prior_a + LL_prior_b + LL_data
    else:
        LL = LL_data

    if isnan(LL):
        return -numpy.inf
    if callback is not None:
        callback(LL)
    return LL
Esempio n. 3
0
    def cdf(self, x, t, ci=None):
        x = numpy.array(x)
        t = numpy.array(t)
        if ci is None:
            params = self.params['map']
        else:
            assert self._ci
            params = self.params['samples']
        lambd = exp(dot(x, params['alpha'].T) + params['a'])
        c = expit(dot(x, params['beta'].T) + params['b'])
        M = c * gammainc(params['k'],
                         numpy.multiply.outer(t, lambd)**params['p'])

        if not ci:
            return M
        else:
            # Replace the last axis with a 3-element vector
            y = numpy.mean(M, axis=-1)
            y_lo = numpy.percentile(M, (1 - ci) * 50, axis=-1)
            y_hi = numpy.percentile(M, (1 + ci) * 50, axis=-1)
            return numpy.stack((y, y_lo, y_hi), axis=-1)