Esempio n. 1
0
def write_to_excel(poilist, cityname, classfield):
    # 一个Workbook对象,这就相当于创建了一个Excel文件
    book = xlwt.Workbook(encoding='utf-8', style_compression=0)
    sheet = book.add_sheet(classfield, cell_overwrite_ok=True)
    # 第一行(列标题)
    sheet.write(0, 0, 'id')
    sheet.write(0, 1, 'name')
    sheet.write(0, 2, 'lng')
    sheet.write(0, 3, 'lat')
    sheet.write(0, 4, 'address')
    for i in range(len(poilist)):
        # 根据poi的id获取边界数据
        # bounlist = getDetail(poilist[i]['id'])
        # while (len(bounlist) < 4):
        # bounlist.append(0)
        # 每一行写入
        location = gcj02_to_wgs84(poilist[i]['location'].split(',')).split(',')
        sheet.write(i + 1, 0, poilist[i]['id'])
        sheet.write(i + 1, 1, poilist[i]['name'])
        sheet.write(i + 1, 2, location[0])
        sheet.write(i + 1, 3, location[1])
        sheet.write(i + 1, 4, poilist[i]['address'])

    # 最后,将以上操作保存到指定的Excel文件中
    book.save(r'd:\\' + cityname + classfield + '.xls')
Esempio n. 2
0
def extract(xy):
    '''输入xy数组or列表'''
    sql = """SELECT * FROM `population_beijing` where `LAT`=""" + str(
        xy[1]) + ' and `LON`=' + str(xy[0])
    cursor.execute(sql)

    result = cursor.fetchall()

    try:
        count = pd.DataFrame(list(list(r) for r in result)).iloc[:, 3].mean()
        sql = """INSERT INTO `beijing_pop` (`LON`,`LAT`,`COUNT`) VALUES(%s, %s, %s)"""
        cursor.execute(sql, (gcj02_to_wgs84(
            xy[0], xy[1])[0], gcj02_to_wgs84(xy[0], xy[1])[1], count))
        db.commit()
    except:
        db.rollback()
Esempio n. 3
0
def coordTransform():
    with open('trips.json', 'r') as file:
        paths = json.load(file)
    for i, path in enumerate(paths):
        for j, point in enumerate(path['path']):
            temp = gcj02_to_wgs84(point[0], point[1])
            path['path'][j][0] = temp[0]
            path['path'][j][1] = temp[1]
    with open('new_trips.json', 'w') as file:
        json.dump(paths, file)
Esempio n. 4
0
def generateOrder():
    req = pd.read_csv('req.csv', dtype=str)
    orders = []
    for index, row in req.iterrows():
        temp = {}
        temp['timestamp'] = int(eval(row['Tr']))
        temp['coordinates'] = gcj02_to_wgs84(float(row['olng']),
                                             float(row['olat']))
        orders.append(temp)
    orders.sort(key=lambda x: x['timestamp'])
    with open('order.json', 'w') as file:
        json.dump(orders, file)
Esempio n. 5
0
    def insert_into_db(self, pois):
        if len(pois) == 0:
            print("pois empty")
            return False

        for p in pois:
            map = DataMap()
            # print(p)
            print("object_id: ", id(map.data_map))
            location = p.get("location").split(",")
            map.data_map["locationx"] = location[0]
            map.data_map["locationy"] = location[1]
            location = gcj02_to_wgs84(float(location[0]), float(location[1]))
            map.data_map["wgsx"] = location[0]
            map.data_map["wgsy"] = location[1]

            entr_location = p.get("entr_location")
            entr_location = gcj02_to_wgs84(float(entr_location.split(",")[0]), float(entr_location.split(",")[1])) if len(entr_location) else [None, None]
            map.data_map["wgs_entrx"] = entr_location[0]
            map.data_map["wgs_entry"] = entr_location[1]

            exit_location = p.get("exit_location")
            exit_location = gcj02_to_wgs84(float(exit_location.split(",")[0]), float(exit_location.split(",")[1])) if len(exit_location) else [None, None]
            map.data_map["wgs_exitx"] = exit_location[0]
            map.data_map["wgs_exity"] = exit_location[1]

            type = p.get("type")
            map.data_map["type"] = type.split(";")[0]
            map.data_map["sub_type1"] = type.split(";")[1]
            map.data_map["sub_type2"] = type.split(";")[2]

            for i in row0:
                if i in self.exclude_list:
                    continue
                map.data_map[i] = p.get(i, None)
            print(map.data_map)
            global start_row
            self.collection.insert_one(map.data_map)
        return True
Esempio n. 6
0
def convert_by_type(lng, lat, type):
    if type == 'g2b':
        return gcj02_to_bd09(lng, lat)
    elif type == 'b2g':
        return bd09_to_gcj02(lng, lat)
    elif type == 'w2g':
        return wgs84_to_gcj02(lng, lat)
    elif type == 'g2w':
        return gcj02_to_wgs84(lng, lat)
    elif type == 'b2w':
        return bd09_to_wgs84(lng, lat)
    elif type == 'w2b':
        return wgs84_to_bd09(lng, lat)
    else:
        print('Usage: type must be in one of g2b, b2g, w2g, g2w, b2w, w2b')
        sys.exit()
Esempio n. 7
0
def tPoint(lng, lat, type):
    if type == 'g2b':
        tcoord = gcj02_to_bd09(lng, lat)
    elif type == 'b2g':
        tcoord = bd09_to_gcj02(lng, lat)
    elif type == 'w2g':
        tcoord = wgs84_to_gcj02(lng, lat)
    elif type == 'g2w':
        tcoord = gcj02_to_wgs84(lng, lat)
    elif type == 'b2w':
        tcoord = bd09_to_wgs84(lng, lat)
    elif type == 'w2b':
        tcoord = wgs84_to_bd09(lng, lat)
    else:
        tcoord = [lng, lat]
    return tcoord
Esempio n. 8
0
def write_to_excel(poilist, cityname, classfield):
    # 一个Workbook对象,这就相当于创建了一个Excel文件
    book = xlwt.Workbook(encoding='utf-8', style_compression=0)
    sheet = book.add_sheet(classfield, cell_overwrite_ok=True)
    # 第一行(列标题)
    sheet.write(0, 0, 'id')
    sheet.write(0, 1, 'name')
    sheet.write(0, 2, 'location')
    sheet.write(0, 3, 'pname')
    sheet.write(0, 4, 'pcode')
    sheet.write(0, 5, 'cityname')
    sheet.write(0, 6, 'citycode')
    sheet.write(0, 7, 'adname')
    sheet.write(0, 8, 'adcode')
    sheet.write(0, 9, 'address')
    sheet.write(0, 10, 'type')
    sheet.write(0, 11, '建筑面积')
    sheet.write(0, 12, '容积率')
    sheet.write(0, 13, '边界面积')
    sheet.write(0, 14, '坐标')
    for i in range(len(poilist)):
        # 根据poi的id获取边界数据
        bounlist = getDetail(poilist[i]['id'])
        time.sleep(random.randint(3, 9))
        while (len(bounlist) < 4):
            bounlist.append(0)
        #每一行写入
        sheet.write(i + 1, 0, poilist[i]['id'])
        sheet.write(i + 1, 1, poilist[i]['name'])
        sheet.write(i + 1, 2,
                    gcj02_to_wgs84(poilist[i]['location'].split(',')))
        sheet.write(i + 1, 3, poilist[i]['pname'])
        sheet.write(i + 1, 4, poilist[i]['pcode'])
        sheet.write(i + 1, 5, poilist[i]['cityname'])
        sheet.write(i + 1, 6, poilist[i]['citycode'])
        sheet.write(i + 1, 7, poilist[i]['adname'])
        sheet.write(i + 1, 8, poilist[i]['adcode'])
        sheet.write(i + 1, 9, poilist[i]['address'])
        sheet.write(i + 1, 10, poilist[i]['type'])
        sheet.write(i + 1, 11, bounlist[0])
        sheet.write(i + 1, 12, bounlist[1])
        sheet.write(i + 1, 13, bounlist[2])
        sheet.write(i + 1, 14, bounlist[3])
    time.sleep(random.randint(0, 10))
    # 最后,将以上操作保存到指定的Excel文件中
    book.save(r'd:\\' + cityname + '.xls')
Esempio n. 9
0
f = open(filename + '.csv', 'r')
file = f.readlines()
titles = file[:1][0]
contents = file[1:]
cols_num = len(titles.split(','))
f.close()

f = open(filename + '_trans.csv', 'w')
f_err = open(filename + '_err.csv', 'w')
f.writelines(titles[:-1].encode('utf-8') + ',lng_trans,lat_trans\n')
for i in range(len(contents)):
    # print contents[i]
    # print len(contents[i].split(','))
    try:
        content = contents[i].split(',')
        gcj02lng = content[-2]
        gcj02lat = content[-1][:-1]
        res = gcj02_to_wgs84(float(gcj02lng), float(gcj02lat))
        plng = str(res[0])
        plat = str(res[1])
        f.writelines(contents[i][:-1] + ',' + plng + ',' + plat + '\n')
        process_i = i * 100 / len(contents)
        processbar_general(process_i)
    except Exception as e:
        print str(i + 2)
        f_err.writelines(str(i + 2) + '\n')
    # exit()
f_err.close()
f.close()
Esempio n. 10
0
    return 0

def point_clean(coords):
    '''输入((x,y)形式的数据,输出标记
    1:删除该线段
    0:保留该线段'''
    for xy in coords:
        if xy[0][0]>180 or xy[0][0]<-180 or xy[0][1]>90 or xy[0][1]<-90:
            return 1
        return 0

'''轨迹数据'''
#保存名称为footprint#
i = 1
for path in line_paths[i-1:]:
    try:
        gdf = gpd.GeoDataFrame.from_file(path)
        gdf['xy'] = gdf['geometry'].apply(lambda x: x.coords)
        gdf['judge'] = gdf['xy'].apply(line_clean)
        gdf = gdf[gdf['judge'] == 0]

        gdf.drop(['judge'], inplace=True, axis=1)

        gdf['geometry'] = gdf['xy'].apply(lambda x: LineString([gcj02_to_wgs84(x[0],x[1]) for x in x]))
        gdf.drop(['xy'], inplace=True, axis=1)

        gpd.GeoDataFrame(gdf).to_file('E:\\全国轨迹清洗\\footprint(' + str(i) + ').shp')  # 输出的文件为84坐标系
    except:
        print(i,path)
    finally:
        i+=1
Esempio n. 11
0
    'User-Agent': 'okhttp/3.10.0',
}

# 偏移量,根据实际情况进行调整,值越小则精度越高,但效率更低
# 0.002 约等于316米
offset = 0.002

bikes = {}
for lng in np.arange(121.484258, 121.500859, offset):
    for lat in np.arange(31.233277, 31.249362, offset):
        data = [('longitude', lng), ('latitude', lat)]

        data = requests.post(
            'https://app.mobike.com/api/nearby/v4/nearbyBikeInfo',
            headers=headers,
            data=data).json()

        for bike in data['bike']:
            id, x, y = bike['distId'], bike['distX'], bike['distY']
            wgs84 = coordTransform_utils.gcj02_to_wgs84(x, y)
            # 记录时间,经度、纬度
            bikes[id] = (datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                         wgs84[0], wgs84[1])
        print("Bikes:", len(bikes))

# 按照年月日-时分秒形式存为压缩包
filename = datetime.now().strftime("%Y%m%d-%H%M%S") + ".csv.gz"
with gzip.open(open(filename, 'wb'), 'wt', compresslevel=9) as f:
    for id, data in bikes.items():
        f.write("%s,%s,%s,%s\n" % (data[0], id, data[1], data[2]))