def setUp(self):
        """
        Setup test environment
        """
        logging.basicConfig(level=logging.ERROR)

        self.env = simpy.Environment()
        # Configure simulator parameters
        network, ing_nodes, eg_nodes = reader.read_network(NETWORK_FILE,
                                                           node_cap=10,
                                                           link_cap=10)
        sfc_list = reader.get_sfc(SERVICE_FUNCTIONS_FILE)
        sf_list = reader.get_sf(SERVICE_FUNCTIONS_FILE, RESOURCE_FUNCTION_PATH)
        config = reader.get_config(CONFIG_FILE)

        self.metrics = Metrics(network, sf_list)

        sf_placement = dummy_data.triangle_placement
        schedule = dummy_data.triangle_schedule

        # Initialize Simulator and SimulatoParams objects
        self.simulator_params = SimulatorParams(log,
                                                network,
                                                ing_nodes,
                                                eg_nodes,
                                                sfc_list,
                                                sf_list,
                                                config,
                                                self.metrics,
                                                sf_placement=sf_placement,
                                                schedule=schedule)
        self.flow_simulator = FlowSimulator(self.env, self.simulator_params)
        self.flow_simulator.start()
        self.env.run(until=SIMULATION_DURATION)
Esempio n. 2
0
def main():
    args = parse_args()
    metrics.reset()
    start_time = time.time()
    logging.basicConfig(level=logging.INFO)

    # Create a SimPy environment
    env = simpy.Environment()

    # Seed the random generator
    random.seed(args.seed)
    numpy.random.seed(args.seed)

    # Parse network and get NetworkX object and ingress network list
    network, ing_nodes = reader.read_network(args.network,
                                             node_cap=10,
                                             link_cap=10)

    # Getting current SFC list, and the SF list of each SFC, and config

    # use dummy placement and schedule for running simulator without algorithm
    # TODO: make configurable via CLI
    sf_placement = dummy_data.triangle_placement
    schedule = dummy_data.triangle_schedule

    # Getting current SFC list, and the SF list of each SFC, and config
    sfc_list = reader.get_sfc(args.sf)
    sf_list = reader.get_sf(args.sf, args.sfr)
    config = reader.get_config(args.config)

    # Create the simulator parameters object with the provided args
    params = SimulatorParams(network,
                             ing_nodes,
                             sfc_list,
                             sf_list,
                             config,
                             args.seed,
                             sf_placement=sf_placement,
                             schedule=schedule)
    log.info(params)

    if args.trace:
        trace = reader.get_trace(args.trace)
        TraceProcessor(params, env, trace)

    # Create a FlowSimulator object, pass the SimPy environment and params objects
    simulator = FlowSimulator(env, params)

    # Start the simulation
    simulator.start()

    # Run the simpy environment for the specified duration
    env.run(until=args.duration)

    # Record endtime and running_time metrics
    end_time = time.time()
    metrics.running_time(start_time, end_time)

    # dump all metrics
    log.info(metrics.metrics)
Esempio n. 3
0
    def __init__(self,
                 network_file,
                 service_functions_file,
                 config_file,
                 resource_functions_path="",
                 test_mode=False,
                 test_dir=None):
        super().__init__(test_mode)
        # Number of time the simulator has run. Necessary to correctly calculate env run time of apply function
        self.network_file = network_file
        self.test_dir = test_dir
        # init network, sfc, sf, and config files
        self.network, self.ing_nodes, self.eg_nodes = reader.read_network(
            self.network_file)
        self.sfc_list = reader.get_sfc(service_functions_file)
        self.sf_list = self.get_sf(service_functions_file)
        self.config = reader.get_config(config_file)
        # Assume result path is the path where network file is in.
        self.result_base_path = os.path.dirname(self.network_file)
        if 'trace_path' in self.config:
            # Quick solution to copy trace file to same path for network file as provided by calling algo.
            trace_path = os.path.join(os.getcwd(), self.config['trace_path'])
            copyfile(
                trace_path,
                os.path.join(self.result_base_path,
                             os.path.basename(trace_path)))

        self.prediction = False
        # Check if future ingress traffic setting is enabled
        if 'future_traffic' in self.config and self.config['future_traffic']:
            self.prediction = True

        write_schedule = False
        if 'write_schedule' in self.config and self.config['write_schedule']:
            write_schedule = True
        write_flow_actions = False
        if 'write_flow_actions' in self.config and self.config[
                'write_flow_actions']:
            write_flow_actions = True
        # Create CSV writer
        self.writer = ResultWriter(self.test_mode, self.test_dir,
                                   write_schedule, write_flow_actions)
        self.episode = 0
        self.last_apply_time = None
        # Load trace file
        if 'trace_path' in self.config:
            trace_path = os.path.join(os.getcwd(), self.config['trace_path'])
            self.trace = reader.get_trace(trace_path)

        #TODO:
        # Create a simulator runner, which take all the parameters in and hold them, process them
        # Interact and store the result in metrics.
        self.param = SimulatorParam(config=self.config,
                                    network=self.network,
                                    ing_nodes=self.ing_nodes,
                                    eg_nodes=self.eg_nodes,
                                    sfc_list=self.sfc_list,
                                    sf_list=self.sf_list)
Esempio n. 4
0
    def __init__(self,
                 network_file,
                 service_functions_file,
                 config_file,
                 resource_functions_path="",
                 test_mode=False,
                 test_dir=None):
        super().__init__(test_mode)
        # Number of time the simulator has run. Necessary to correctly calculate env run time of apply function
        self.run_times = int(1)
        self.network_file = network_file
        self.test_dir = test_dir
        # Create CSV writer
        self.writer = ResultWriter(self.test_mode, self.test_dir)
        # init network, sfc, sf, and config files
        self.network, self.ing_nodes, self.eg_nodes = reader.read_network(
            self.network_file)
        self.sfc_list = reader.get_sfc(service_functions_file)
        self.sf_list = reader.get_sf(service_functions_file,
                                     resource_functions_path)
        self.config = reader.get_config(config_file)
        self.metrics = Metrics(self.network, self.sf_list)
        # Assume result path is the path where network file is in.
        self.result_base_path = os.path.dirname(self.network_file)
        if 'trace_path' in self.config:
            # Quick solution to copy trace file to same path for network file as provided by calling algo.
            trace_path = os.path.join(os.getcwd(), self.config['trace_path'])
            copyfile(
                trace_path,
                os.path.join(self.result_base_path,
                             os.path.basename(trace_path)))

        self.prediction = False
        # Check if future ingress traffic setting is enabled
        if 'future_traffic' in self.config and self.config['future_traffic']:
            self.prediction = True
        self.params = SimulatorParams(self.network,
                                      self.ing_nodes,
                                      self.eg_nodes,
                                      self.sfc_list,
                                      self.sf_list,
                                      self.config,
                                      self.metrics,
                                      prediction=self.prediction)
        self.episode = 0
Esempio n. 5
0
def main():
    # parse CLI args (when using simulator as stand-alone, not triggered through the interface)
    parser = argparse.ArgumentParser(description="Trainer tool for LSTM prediction for Coord-sim simulator")
    parser.add_argument('-c', '--config', required=True, dest="sim_config",
                        help="The simulator config file")
    parser.add_argument('-p', '--plot', action="store_true")
    args = parser.parse_args()

    print("Loading arguments")
    sim_config = reader.get_config(args.sim_config)
    trace = reader.get_trace(sim_config['trace_path'])
    dest_dir = sim_config['lstm_weights']
    params = SimConfig(sim_config)
    print(f"Loaded trace with {len(trace)} entries")

    predictor = LSTM_Predictor(trace, params)

    print("Training LSTM model")
    predictor.train_model()
    print(f"Saving model to {dest_dir}")
    predictor.save_model(dest_dir)

    del predictor

    print("Load weights to test prediction")
    predictor = LSTM_Predictor(trace, params=params, weights_dir=dest_dir)

    predictions = []
    for test in predictor.requested_traffic:
        value = test
        predictions.append(predictor.predict_traffic(value))

    if args.plot:
        matplotlib.use('TkAgg')
        pyplot.plot(predictor.requested_traffic, label="Traffic data")
        pyplot.plot(predictions, label="Predictions")
        pyplot.legend()
        pyplot.show()

    print("Done with no errors!")
 def __init__(self,
              network_file,
              service_functions_file,
              config_file,
              resource_functions_path="",
              test_mode=False,
              test_dir=None):
     # Number of time the simulator has run. Necessary to correctly calculate env run time of apply function
     self.run_times = int(1)
     self.network_file = network_file
     self.test_mode = test_mode
     self.test_dir = test_dir
     # Create CSV writer
     self.writer = ResultWriter(self.test_mode, self.test_dir)
     # init network, sfc, sf, and config files
     self.network, self.ing_nodes = reader.read_network(self.network_file,
                                                        node_cap=10,
                                                        link_cap=10)
     self.sfc_list = reader.get_sfc(service_functions_file)
     self.sf_list = reader.get_sf(service_functions_file,
                                  resource_functions_path)
     self.config = reader.get_config(config_file)
Esempio n. 7
0
    def init(self,
             network_file,
             service_functions_file,
             config_file,
             seed,
             trace=None,
             resource_functions_path=""):

        # Initialize metrics, record start time
        metrics.reset()
        self.run_times = int(1)
        self.start_time = time.time()

        # Parse network and SFC + SF file
        self.network, self.ing_nodes = reader.read_network(network_file,
                                                           node_cap=10,
                                                           link_cap=10)
        self.sfc_list = reader.get_sfc(service_functions_file)
        self.sf_list = reader.get_sf(service_functions_file,
                                     resource_functions_path)
        self.config = reader.get_config(config_file)

        # Generate SimPy simulation environment
        self.env = simpy.Environment()

        # Instantiate the parameter object for the simulator.
        self.params = SimulatorParams(self.network, self.ing_nodes,
                                      self.sfc_list, self.sf_list, self.config,
                                      seed)

        # Trace handling
        if trace:
            trace = reader.get_trace(trace)
            TraceProcessor(self.params, self.env, trace)

        self.duration = self.params.run_duration
        # Get and plant random seed
        self.seed = seed
        random.seed(self.seed)
        numpy.random.seed(self.seed)

        # Instantiate a simulator object, pass the environment and params
        self.simulator = FlowSimulator(self.env, self.params)

        # Start the simulator
        self.simulator.start()

        # Run the environment for one step to get initial stats.
        self.env.step()

        # Parse the NetworkX object into a dict format specified in SimulatorState. This is done to account
        # for changing node remaining capacities.
        # Also, parse the network stats and prepare it in SimulatorState format.
        self.parse_network()
        self.network_metrics()

        # Record end time and running time metrics
        self.end_time = time.time()
        metrics.running_time(self.start_time, self.end_time)
        simulator_state = SimulatorState(self.network_dict,
                                         self.simulator.params.sf_placement,
                                         self.sfc_list, self.sf_list,
                                         self.traffic, self.network_stats)
        # self.writer.write_state_results(self.env, simulator_state)
        return simulator_state
Esempio n. 8
0
    def __init__(self,
                 seed,
                 agent_config,
                 sim_config,
                 network,
                 services,
                 training_duration=10000,
                 test_mode=None,
                 sim_seed=None,
                 best=False):
        self.best = best
        # Set the seed of the agent
        self.seed = seed
        self.sim_seed = sim_seed
        # Check to enable test mode
        self.test_mode = test_mode

        # Store paths of config files
        self.agent_config_path = agent_config
        self.sim_config_path = sim_config
        self.services_path = services
        self.network_path = network

        # Get the file stems for result path setup
        self.agent_config_name = os.path.splitext(
            os.path.basename(self.agent_config_path))[0]
        self.network_name = os.path.splitext(
            os.path.basename(self.network_path))[0]
        self.services_name = os.path.splitext(
            os.path.basename(self.services_path))[0]
        self.sim_config_name = os.path.splitext(
            os.path.basename(self.sim_config_path))[0]

        # Set training and testing durations
        self.training_duration = training_duration

        # Get and load agent configuration file
        self.agent_config = get_config(self.agent_config_path)
        self.testing_duration = self.agent_config.get('testing_duration',
                                                      100000)

        # Setup items from agent config file: Episode len, reward_metrics_history
        self.episode_length = self.agent_config[
            'episode_length']  # 1000 arrivals per episode
        self.reward_metrics_history = self.agent_config[
            'reward_history_length']

        # Read the network file, store ingress and egress nodes
        net, self.ing_nodes, self.eg_nodes = read_network(self.network_path)
        self.network: DiGraph = net

        # Get current timestamps - for storing and identifying results
        datetime_obj = datetime.now()
        self.timestamp = datetime_obj.strftime('%Y-%m-%d_%H-%M-%S')
        self.training_id = f"{self.timestamp}_seed{self.seed}"

        # Create results structures
        self.create_result_dir()
        copy2(self.agent_config_path, self.result_dir)
        copy2(self.sim_config_path, self.result_dir)
        copy2(self.network_path, self.result_dir)
        copy2(self.services_path, self.result_dir)

        # ## ACTION AND OBSERVATION SPACE CALCULATIONS ## #

        # Get degree and diameter of network
        self.net_degree = self.get_max_degree()

        # Get network diameter in terms of e2e delay
        self.net_diameter = network_diameter(self.network)

        # Get max link and node cap for all nodes in the network
        self.max_link_caps, self.max_node_cap = self.get_net_max_cap()

        # Observation shape

        # Size of processing element: 1
        self.processing_size = 1
        # Size of distance to egress: 1
        self.dist_to_egress = 1
        # Size of ttl
        self.ttl_size = 1
        # Size of dr observation
        self.dr_size = 1
        # Node resource usage size = this node + max num of neighbor nodes
        self.node_resources_size = 1 + self.net_degree
        # Link resource usage size = max num of neighbor nodes
        self.link_resources_size = self.net_degree
        # Distance of neighbors to egress
        self.neighbor_dist_to_eg = self.net_degree
        # Component availability status = this node + max num of neighbor nodes
        self.vnf_status = 1 + self.net_degree

        # Observation shape = Above elements combined
        self.observation_shape = (
            self.processing_size +
            # self.dist_to_egress +
            self.ttl_size +
            # self.dr_size +
            self.vnf_status + self.node_resources_size +
            self.link_resources_size + self.neighbor_dist_to_eg, )

        # Action space limit (no shape in discrete actions):
        # The possible destinations for the flow = This node + max num of neighbor nodes
        self.action_limit = 1 + self.net_degree