Esempio n. 1
0
    def ChooseXtal(self, widget):
        self.xtalID = str(widget.get_active_text())
        for n,item in enumerate(self.Todo):
            if str(item[0]) == self.xtalID:
                self.index = n

        self.db_dict_mainTable={}
        self.db_dict_panddaTable={}
        if str(self.Todo[self.index][0]) != None:
            self.compoundID=str(self.Todo[self.index][1])
            self.refinement_folder=str(self.Todo[self.index][4])
            self.refinement_outcome=str(self.Todo[self.index][5])
            self.ligand_confidence=str(self.Todo[self.index][6])
            # updating dataset outcome radiobuttons
            current_stage=0
            for i,entry in enumerate(self.experiment_stage):
#                if entry[1]==self.refinement_outcome:                          # use number as identifier, not string since this one might change
                if entry[1].split()[0] == self.refinement_outcome.split()[0]:
                    current_stage=i
                    break
            for i,button in enumerate(self.experiment_stage_button_list):
                if i==current_stage:
                    button.set_active(True)
                    break
            # updating ligand confidence radiobuttons
            current_stage=0
            for i,entry in enumerate(self.ligand_confidence_category):
                print '--->',entry,self.ligand_confidence
#                if entry==self.ligand_confidence:                              # use number as identifier, not string since this one might change
                try:
                    if entry.split()[0] == self.ligand_confidence.split()[0]:
                        current_stage=i
                        break
                except IndexError:
                    pass
            for i,button in enumerate(self.ligand_confidence_button_list):
                if i==current_stage:
                    button.set_active(True)
                    break
            if int(self.selected_site[0]) > 0:
                pandda_info=self.db.get_pandda_info_for_coot(self.xtalID,self.selected_site[0])
                print 'PANDDA INDO', pandda_info
                try:
                    self.event_map=pandda_info[0][0]
                    coot.set_rotation_centre(float(pandda_info[0][1]),float(pandda_info[0][2]),float(pandda_info[0][3]))
                    self.spider_plot=pandda_info[0][4]
                except IndexError:
                    self.event_map=''
                    self.spider_plot=''
            else:
                self.event_map=''
                self.spider_plot=''
        self.RefreshData()
Esempio n. 2
0
def cfc_process_site(site_number, imol_ligand_specs, first_ligand_spec):

    imol_first = imol_ligand_specs[0][0]  # others are lsq fitted to this

    env_residue_specs = coot.residues_near_residue_py(imol_first, first_ligand_spec, 6)

    protein_res_specs = [r for r in env_residue_specs if get_residue_name(imol_first, r) != "HOH"]

    # only lsq the first (0th) one - that one has the most ligands in the site
    #
    if site_number == 0:
        print "DEBUG:: protein_res_specs (for lsqing):"
        for spec in protein_res_specs:
            print "   ", spec, get_residue_name(imol_first, spec)

        for res_spec in protein_res_specs:
            chain_id = rsu.residue_spec_to_chain_id(res_spec)
            res_no = rsu.residue_spec_to_res_no(res_spec)
            coot.add_lsq_match(res_no, res_no, chain_id, res_no, res_no, chain_id, 1)

        for imol in imol_ligand_specs[1:]:  # lsq fit others to the first in the list
            coot.apply_lsq_matches_py(imol_first, imol[0])

        ligand_centre = coot.residue_centre_py(
            imol_first,
            rsu.residue_spec_to_chain_id(first_ligand_spec),
            rsu.residue_spec_to_res_no(first_ligand_spec),
            "",
        )
        coot.set_go_to_atom_molecule(imol_first)
        coot.set_rotation_centre(*ligand_centre)

    combo_list = []
    try:

        # we have a large radius for the water selection
        radius = 10  # water must be within radius of it's own ligand
        radius_2 = 5  # water must be with radius_2 of any ligand atom (not just its own)

        combo_list = coot.chemical_feature_clusters_py(env_residue_specs, imol_ligand_specs, radius, radius_2)
    except TypeError as e:
        print e

        # the rest is unlikely to work if we get here

    if True:

        water_position_list = combo_list[0]
        chemical_feature_list = combo_list[1]
        # residues_sidechains_list = combo_list[1]

        # ----------- handle waters -----------

        w_positions_list = []

        for item in [wat[2] for wat in water_position_list]:
            w_positions_list.append(item)

        for item in [wat[2] for wat in water_position_list]:
            delta = 0.1
            p1 = [item[0], item[1], item[2] + delta]
            p2 = [item[0], item[1], item[2] - delta]
            p3 = [item[0], item[1] + delta, item[2]]
            p4 = [item[0], item[1] - delta, item[2]]
            p5 = [item[0] + delta, item[1], item[2]]
            p6 = [item[0] - delta, item[1], item[2]]

            w_positions_list.append(p1)
            w_positions_list.append(p2)
            w_positions_list.append(p3)
            w_positions_list.append(p4)
            w_positions_list.append(p5)
            w_positions_list.append(p6)

        w_positions_np = np.array(w_positions_list)

        # move these to the origin
        # w_positions_np = w_positions_np_at_ligand
        # for pos in w_positions_np:
        #     pos -= np.array(ligand_centre)

        # dpgmm = mixture.DPGMM(n_components=25, covariance_type='spherical', alpha=1.101,
        #                       n_iter=40000, params='wmc', init_params='wmc', tol=1e-4,
        #                       verbose=0)
        #
        # the number of clusters is highly related to the dist_cutoff (the
        # distance of an accepted water atom to any any atom in any of the
        # ligands = currently 4.2)
        #
        gmm, cluster_assignments = cluster_and_display_waters(site_number, w_positions_np)

        means = gmm.means_
        cvs = gmm._get_covars()
        weights = gmm.weights_

        print "water means:"
        for mean in means:
            print "   ", mean

        # each water has been assigned a cluster, that is the cluster_assignments
        #
        # need to convert the array cluster_assignments to a list of items:
        #   [imol water_residue_spec cluster_number]
        #
        water_cluster_info_for_input = []
        for i, water_pos in enumerate(water_position_list):
            # print water_pos, cluster_assignments[i]
            item = [water_pos[0], water_pos[1], cluster_assignments[i]]
            water_cluster_info_for_input.append(item)

        # cluster_info is a list of
        #  list of water cluster info
        #      list of [mean, weight, length]  where length is the eigenvalue v[0],
        #              (same as v[1], v[2] - all the same for spherical model)
        #      list of cluster predictions for then input positions
        #
        ci = zip([[l[0], l[1], l[2]] for l in means], weights, [cv[0][0] for cv in cvs])
        water_cluster_info = [ci, water_cluster_info_for_input]
        # give those results back to c++ so that we can use them for display
        #

        coot.set_display_generic_objects_as_solid(1)

        # ----------- handle chemical features -----------

        # make a dictionary from the list of chemical features
        chemical_features_dict = {}
        for item in chemical_feature_list:
            for type in ["Donor", "Acceptor", "Aromatic", "Hydrophobe", "LumpedHydrophobe"]:
                if item[0] == type:
                    try:
                        chemical_features_dict[type].append(item[1:])
                    except KeyError:
                        chemical_features_dict[type] = [item[1:]]

        chemical_feature_clusters_info = []
        for key in chemical_features_dict:
            # list of [type, features-annotated-by-cluster-number, cluster_means]
            clusters = cluster_and_display_chemical_features(site_number, key, chemical_features_dict[key])
            chemical_feature_clusters_info.append(clusters)

        # print 'water_cluster_info'
        # for wc in water_cluster_info:
        #    print wc

        cluster_info = [water_cluster_info, chemical_feature_clusters_info]

        coot.chemical_feature_clusters_accept_info_py(site_number, protein_res_specs, imol_ligand_specs, cluster_info)
Esempio n. 3
0
def cfc_process_site(site_number, imol_ligand_specs, imol_first,
                     first_ligand_spec):

    print("debug:: in cfc_process_site with imol_ligand_specs",
          imol_ligand_specs)
    print("debug:: in cfc_process_site with non-first imol_ligand_specs",
          imol_ligand_specs[1:])

    # print("calling residues_near_residue_py", imol_first, first_ligand_spec)
    env_residue_specs = coot.residues_near_residue_py(imol_first,
                                                      first_ligand_spec, 6)
    # print("env_residue_specs", env_residue_specs)
    protein_res_specs = [
        r for r in env_residue_specs
        if get_residue_name(imol_first, r) != "HOH"
    ]

    # only lsq the first (0th) one - that one has the most ligands in the site
    #
    if site_number == 0:
        # print("protein_res_specs (for lsqing):")
        # for spec in protein_res_specs:
        #     print("   ", spec, get_residue_name(imol_first, spec))

        for res_spec in protein_res_specs:
            chain_id = rsu.residue_spec_to_chain_id(res_spec)
            res_no = rsu.residue_spec_to_res_no(res_spec)
            coot.add_lsq_match(res_no, res_no, chain_id, res_no, res_no,
                               chain_id, 1)

        for imol_and_spec in imol_ligand_specs[
                1:]:  # lsq fit others to the first in the list
            print('============================ lsq-match ', imol_first,
                  imol_and_spec, imol_and_spec[0])
            imol, spec = imol_and_spec
            # coot.apply_lsq_matches_py(imol_first, imol_and_spec[0])
            coot.apply_lsq_matches_py(imol_first, imol)
            make_ball_and_stick_by_spec(imol, spec)
            # pass

        print("Here with first_ligand_spec:", first_ligand_spec)
        ligand_centre = coot.residue_centre_py(
            imol_first, rsu.residue_spec_to_chain_id(first_ligand_spec),
            rsu.residue_spec_to_res_no(first_ligand_spec), '')
        coot.set_go_to_atom_molecule(imol_first)
        coot.set_rotation_centre(*ligand_centre)

    combo_list = []
    try:

        # we have a large radius for the water selection
        radius = 10  # water must be within radius of it's own ligand
        radius_2 = 5  # water must be with radius_2 of any ligand atom (not just its own)

        combo_list = coot.chemical_feature_clusters_py(env_residue_specs,
                                                       imol_ligand_specs,
                                                       radius, radius_2)
    except TypeError as e:
        print(e)

        # the rest is unlikely to work if we get here

    if True:

        water_position_list = combo_list[0]
        chemical_feature_list = combo_list[1]
        # residues_sidechains_list = combo_list[1]

        # ----------- handle waters -----------

        w_positions_list = []

        for item in [wat[2] for wat in water_position_list]:
            w_positions_list.append(item)

        for item in [wat[2] for wat in water_position_list]:
            delta = 0.1
            p1 = [item[0], item[1], item[2] + delta]
            p2 = [item[0], item[1], item[2] - delta]
            p3 = [item[0], item[1] + delta, item[2]]
            p4 = [item[0], item[1] - delta, item[2]]
            p5 = [item[0] + delta, item[1], item[2]]
            p6 = [item[0] - delta, item[1], item[2]]

            w_positions_list.append(p1)
            w_positions_list.append(p2)
            w_positions_list.append(p3)
            w_positions_list.append(p4)
            w_positions_list.append(p5)
            w_positions_list.append(p6)

        w_positions_np = np.array(w_positions_list)

        # move these to the origin
        # w_positions_np = w_positions_np_at_ligand
        # for pos in w_positions_np:
        #     pos -= np.array(ligand_centre)

        # dpgmm = mixture.DPGMM(n_components=25, covariance_type='spherical', alpha=1.101,
        #                       n_iter=40000, params='wmc', init_params='wmc', tol=1e-4,
        #                       verbose=0)
        #
        # the number of clusters is highly related to the dist_cutoff (the
        # distance of an accepted water atom to any any atom in any of the
        # ligands = currently 4.2)
        #
        gmm, cluster_assignments = cluster_and_display_waters(
            site_number, w_positions_np)

        means = gmm.means_
        cvs = gmm._get_covars()
        weights = gmm.weights_

        print("water means:")
        for mean in means:
            print("   ", mean)

        # each water has been assigned a cluster, that is the cluster_assignments
        #
        # need to convert the array cluster_assignments to a list of items:
        #   [imol water_residue_spec cluster_number]
        #
        water_cluster_info_for_input = []
        for i, water_pos in enumerate(water_position_list):
            # print water_pos, cluster_assignments[i]
            item = [water_pos[0], water_pos[1], cluster_assignments[i]]
            water_cluster_info_for_input.append(item)

        # cluster_info is a list of
        #  list of water cluster info
        #      list of [mean, weight, length]  where length is the eigenvalue v[0],
        #              (same as v[1], v[2] - all the same for spherical model)
        #      list of cluster predictions for then input positions
        #
        ci = list(
            zip([[l[0], l[1], l[2]] for l in means], weights,
                [cv[0][0] for cv in cvs]))
        water_cluster_info = [ci, water_cluster_info_for_input]
        # give those results back to c++ so that we can use them for display
        #

        coot.set_display_generic_objects_as_solid(1)

        # ----------- handle chemical features -----------

        # make a dictionary from the list of chemical features
        chemical_features_dict = {}
        for item in chemical_feature_list:
            for type in [
                    'Donor', 'Acceptor', 'Aromatic', 'Hydrophobe',
                    'LumpedHydrophobe'
            ]:
                if item[0] == type:
                    try:
                        chemical_features_dict[type].append(item[1:])
                    except KeyError:
                        chemical_features_dict[type] = [item[1:]]

        chemical_feature_clusters_info = []
        for key in chemical_features_dict:
            # list of [type, features-annotated-by-cluster-number, cluster_means]
            clusters = cluster_and_display_chemical_features(
                site_number, key, chemical_features_dict[key])
            chemical_feature_clusters_info.append(clusters)

        # print 'water_cluster_info'
        # for wc in water_cluster_info:
        #    print wc

        cluster_info = [water_cluster_info, chemical_feature_clusters_info]

        coot.chemical_feature_clusters_accept_info_py(site_number,
                                                      protein_res_specs,
                                                      imol_ligand_specs,
                                                      cluster_info)