def create_model(question_id): from app import cache question = Question.query.filter_by(id=question_id).first() manager = Manager(question) manager.create_model() cache.delete('{0}_question_status')
except: continue score = list(tab1['score_swathi']) threshold = 10 mean_error = [] std_error = [] for i in range(20): print i, "th iteration" train_essay, train_score, test_essay, test_score = divide_test_and_train( essay, score, threshold) print "samples for training is ", len(train_essay) print "sample for testing is ", len(test_essay) id = 'a' manager = Manager(essay) model_loc = manager.create_model(id, text=train_essay, scores=train_score, MODEL_PATH=settings.MODEL_PATH) print 'model is created and stored in ', model_loc predicted_score = [ manager.score_essay(text=te, MODEL_PATH=model_loc) for itera, te in enumerate(test_essay) ] diff_score = [ abs(sc - predicted_score[i][0]) / 10.0 for i, sc in enumerate(test_score) ] mean_error.append(np.mean(diff_score)) std_error.append(np.std(diff_score)) print 'average of error is ', np.mean(mean_error), mean_error print 'standard deviation of error is ', np.mean(std_error), std_error
test_scores.append(temp_scores[itr]) return train_text, train_scores, test_text, test_scores if __name__ == "__main__": input_file = "/Users/alok/Documents/Data/Text_Mining/AES/The kings school_que_a_sec_abc_g123.csv" tab1= pd.read_csv(input_file,header=0) essay = list(tab1['text']) for itr, e in enumerate(essay): try: if math.isnan(e): essay[itr] = "" except: continue score = list(tab1['score_swathi']) threshold = 10 mean_error = [] std_error = [] for i in range(20): print i,"th iteration" train_essay, train_score, test_essay,test_score = divide_test_and_train(essay,score, threshold) print "samples for training is ", len(train_essay) print "sample for testing is ", len(test_essay) id ='a' manager = Manager(essay) model_loc = manager.create_model(id, text=train_essay, scores=train_score, MODEL_PATH = settings.MODEL_PATH) print 'model is created and stored in ', model_loc predicted_score=[manager.score_essay(text = te, MODEL_PATH = model_loc) for itera, te in enumerate(test_essay)] diff_score = [abs(sc - predicted_score[i][0])/10.0 for i,sc in enumerate(test_score)] mean_error.append(np.mean(diff_score)) std_error.append(np.std(diff_score)) print 'average of error is ', np.mean(mean_error), mean_error print 'standard deviation of error is ',np.mean(std_error), std_error