Esempio n. 1
0
    def test_run_parallel_ssim_fextractor(self):
        print 'test on running SSIM feature extractor in parallel...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test", content_id=0, asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={'width':576, 'height':324})

        asset_original = Asset(dataset="test", content_id=0, asset_id=1,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=ref_path,
                      asset_dict={'width':576, 'height':324})

        self.fextractors, results = run_executors_in_parallel(
            SsimFeatureExtractor,
            [asset, asset_original],
            fifo_mode=True,
            delete_workdir=True,
            parallelize=True,
            result_store=None,
        )

        self.assertAlmostEqual(results[0]['SSIM_feature_ssim_score'], 0.857692208333, places=4)
        self.assertAlmostEqual(results[0]['SSIM_feature_ssim_l_score'], 0.9923925625, places=4)
        self.assertAlmostEqual(results[0]['SSIM_feature_ssim_c_score'], 0.9611274375, places=4)
        self.assertAlmostEqual(results[0]['SSIM_feature_ssim_s_score'], 0.897844791667, places=4)

        self.assertAlmostEqual(results[1]['SSIM_feature_ssim_score'], 1.0, places=4)
        self.assertAlmostEqual(results[1]['SSIM_feature_ssim_l_score'], 1.0, places=4)
        self.assertAlmostEqual(results[1]['SSIM_feature_ssim_c_score'], 1.0, places=4)
        self.assertAlmostEqual(results[1]['SSIM_feature_ssim_s_score'], 1.0, places=4)
Esempio n. 2
0
    def test_run_parallel_moment_fextractor(self):
        print 'test on running Moment feature extractor in parallel...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={
                          'width': 576,
                          'height': 324
                      })

        asset_original = Asset(dataset="test",
                               content_id=0,
                               asset_id=1,
                               workdir_root=config.ROOT + "/workspace/workdir",
                               ref_path=ref_path,
                               dis_path=ref_path,
                               asset_dict={
                                   'width': 576,
                                   'height': 324
                               })

        self.fextractors, results = run_executors_in_parallel(
            MomentFeatureExtractor,
            [asset, asset_original],
            fifo_mode=True,
            delete_workdir=True,
            parallelize=True,
            result_store=None,
        )

        self.assertAlmostEqual(results[0]['Moment_feature_ref1st_score'],
                               59.788567297525134)
        self.assertAlmostEqual(results[0]['Moment_feature_ref2nd_score'],
                               4696.668388042269)
        self.assertAlmostEqual(results[0]['Moment_feature_refvar_score'],
                               1121.519917231203)
        self.assertAlmostEqual(results[0]['Moment_feature_dis1st_score'],
                               61.332006624999984)
        self.assertAlmostEqual(results[0]['Moment_feature_dis2nd_score'],
                               4798.659574041666)
        self.assertAlmostEqual(results[0]['Moment_feature_disvar_score'],
                               1036.837184348847)

        self.assertAlmostEqual(results[1]['Moment_feature_ref1st_score'],
                               59.788567297525134)
        self.assertAlmostEqual(results[1]['Moment_feature_ref2nd_score'],
                               4696.668388042269)
        self.assertAlmostEqual(results[1]['Moment_feature_refvar_score'],
                               1121.519917231203)
        self.assertAlmostEqual(results[1]['Moment_feature_dis1st_score'],
                               59.788567297525134)
        self.assertAlmostEqual(results[1]['Moment_feature_dis2nd_score'],
                               4696.668388042269)
        self.assertAlmostEqual(results[1]['Moment_feature_disvar_score'],
                               1121.519917231203)
Esempio n. 3
0
    def test_run_vmaf_legacy_runner_not_unique(self):
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={
                          'width': 576,
                          'height': 324
                      })

        asset_original = Asset(dataset="test",
                               content_id=0,
                               asset_id=0,
                               workdir_root=config.ROOT + "/workspace/workdir",
                               ref_path=ref_path,
                               dis_path=ref_path,
                               asset_dict={
                                   'width': 576,
                                   'height': 324
                               })

        with self.assertRaises(AssertionError):
            self.runner = VmafLegacyQualityRunner([asset, asset_original],
                                                  None,
                                                  fifo_mode=True)
Esempio n. 4
0
    def test_run_parallel_psnr_runner(self):
        print 'test on running PSNR quality runner in parallel...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={
                          'width': 576,
                          'height': 324
                      })

        asset_original = Asset(dataset="test",
                               content_id=0,
                               asset_id=1,
                               workdir_root=config.ROOT + "/workspace/workdir",
                               ref_path=ref_path,
                               dis_path=ref_path,
                               asset_dict={
                                   'width': 576,
                                   'height': 324
                               })

        self.runners, results = run_executors_in_parallel(
            PsnrQualityRunner, [asset, asset_original],
            fifo_mode=True,
            delete_workdir=True,
            parallelize=True,
            result_store=None)

        self.assertAlmostEqual(results[0]['PSNR_score'], 30.755063979166664)
        self.assertAlmostEqual(results[1]['PSNR_score'], 60.0)
Esempio n. 5
0
    def test_explain_vmaf_results(self):
        print 'test on running VMAF runner with local explainer...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test", content_id=0, asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={'width':576, 'height':324})

        asset_original = Asset(dataset="test", content_id=0, asset_id=1,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=ref_path,
                      asset_dict={'width':576, 'height':324})

        self.runner = VmafQualityRunnerWithLocalExplainer(
            [asset, asset_original],
            None, fifo_mode=True,
            delete_workdir=True,
            result_store=None,
            optional_dict2={'explainer': LocalExplainer(neighbor_samples=100)}
        )

        np.random.seed(0)

        self.runner.run()
        results = self.runner.results

        self.assertAlmostEqual(results[0]['VMAF_score'], 65.4488588759, places=4)
        self.assertAlmostEqual(results[1]['VMAF_score'], 99.2259317881, places=4)

        expected_feature_names = ['VMAF_feature_adm2_score',
                                  'VMAF_feature_motion_score',
                                  'VMAF_feature_vif_scale0_score',
                                  'VMAF_feature_vif_scale1_score',
                                  'VMAF_feature_vif_scale2_score',
                                  'VMAF_feature_vif_scale3_score']

        weights = np.mean(results[0]['VMAF_scores_exps']['feature_weights'], axis=0)
        self.assertAlmostEqual(weights[0], 0.75441663, places=4)
        self.assertAlmostEqual(weights[1], 0.06816105, places=4)
        self.assertAlmostEqual(weights[2], -0.10934421, places=4)
        self.assertAlmostEqual(weights[3], 0.22051127, places=4)
        self.assertAlmostEqual(weights[4], 0.12517884, places=4)
        self.assertAlmostEqual(weights[5], 0.04639162, places=4)

        self.assertEqual(results[0]['VMAF_scores_exps']['feature_names'],
                         expected_feature_names)

        weights = np.mean(results[1]['VMAF_scores_exps']['feature_weights'], axis=0)
        self.assertAlmostEqual(weights[0], 0.77096087, places=4)
        self.assertAlmostEqual(weights[1], 0.01491754, places=4)
        self.assertAlmostEqual(weights[2], -0.08025557, places=4)
        self.assertAlmostEqual(weights[3], 0.2511188, places=4)
        self.assertAlmostEqual(weights[4], 0.14953561, places=4)
        self.assertAlmostEqual(weights[5], 0.07960753, places=4)

        self.assertEqual(results[1]['VMAF_scores_exps']['feature_names'],
                         expected_feature_names)
Esempio n. 6
0
    def test_duration_sec(self):
        asset = Asset(
            dataset="test",
            content_id=0,
            asset_id=0,
            ref_path="",
            dis_path="",
            asset_dict={
                'ref_start_frame': 2,
                'ref_end_frame': 2,
                'dis_start_frame': 3,
                'dis_end_frame': 3
            },
        )
        self.assertEquals(asset.ref_duration_sec, None)
        self.assertEquals(asset.dis_duration_sec, None)

        asset = Asset(
            dataset="test",
            content_id=0,
            asset_id=0,
            ref_path="",
            dis_path="",
            asset_dict={
                'ref_start_frame': 0,
                'ref_end_frame': 23,
                'dis_start_frame': 3,
                'dis_end_frame': 26,
                'fps': 24
            },
        )
        self.assertEquals(asset.ref_duration_sec, 1.0)
        self.assertEquals(asset.dis_duration_sec, 1.0)
Esempio n. 7
0
    def test_run_vmaf_runner_flat(self):
        print 'test on running VMAF runner on flat pattern...'
        ref_path = config.ROOT + "/resource/yuv/flat_1920_1080_0.yuv"
        dis_path = config.ROOT + "/resource/yuv/flat_1920_1080_10.yuv"
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={
                          'width': 1920,
                          'height': 1080
                      })

        asset_original = Asset(dataset="test",
                               content_id=0,
                               asset_id=1,
                               workdir_root=config.ROOT + "/workspace/workdir",
                               ref_path=ref_path,
                               dis_path=ref_path,
                               asset_dict={
                                   'width': 1920,
                                   'height': 1080
                               })

        self.runner = VmafQualityRunner(
            [asset, asset_original],
            None,
            fifo_mode=True,
            delete_workdir=True,
            result_store=self.result_store,
        )
        self.runner.run()

        results = self.runner.results

        self.assertAlmostEqual(results[0]['VMAF_score'], 99.419836087060176)
        self.assertAlmostEqual(results[0]['VMAF_feature_vif_scale0_score'],
                               1.0)
        self.assertAlmostEqual(results[0]['VMAF_feature_vif_scale1_score'],
                               1.0)
        self.assertAlmostEqual(results[0]['VMAF_feature_vif_scale2_score'],
                               1.0)
        self.assertAlmostEqual(results[0]['VMAF_feature_vif_scale3_score'],
                               1.0)
        self.assertAlmostEqual(results[0]['VMAF_feature_motion_score'], 0.0)
        self.assertAlmostEqual(results[0]['VMAF_feature_adm2_score'], 1.0)

        self.assertAlmostEqual(results[1]['VMAF_score'], 99.419836087060176)
        self.assertAlmostEqual(results[1]['VMAF_feature_vif_scale0_score'],
                               1.0)
        self.assertAlmostEqual(results[1]['VMAF_feature_vif_scale1_score'],
                               1.0)
        self.assertAlmostEqual(results[1]['VMAF_feature_vif_scale2_score'],
                               1.0)
        self.assertAlmostEqual(results[1]['VMAF_feature_vif_scale3_score'],
                               1.0)
        self.assertAlmostEqual(results[1]['VMAF_feature_motion_score'], 0.0)
        self.assertAlmostEqual(results[1]['VMAF_feature_adm2_score'], 1.0)
Esempio n. 8
0
 def test_to_normalized_dict_10le(self):
     asset = Asset(dataset="test",
                   content_id=0,
                   asset_id=0,
                   ref_path="dir/refvideo.yuv420p10le.yuv",
                   dis_path="dir/disvideo.yuv420p10le.yuv",
                   asset_dict={
                       'width': 720,
                       'height': 480,
                       'start_frame': 2,
                       'end_frame': 2
                   })
     self.assertEquals(
         asset.to_normalized_dict(), {
             'asset_dict': {
                 'end_frame': 2,
                 'height': 480,
                 'start_frame': 2,
                 'width': 720
             },
             'asset_id': 0,
             'content_id': 0,
             'dataset': 'test',
             'dis_path': 'disvideo.yuv420p10le.yuv',
             'ref_path': 'refvideo.yuv420p10le.yuv',
             'workdir': ''
         })
Esempio n. 9
0
    def test_use_path_as_workpath(self):
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      ref_path="dir/refvideo.yuv",
                      dis_path="dir/disvideo.yuv",
                      asset_dict={
                          'width': 720,
                          'height': 480,
                          'start_frame': 2,
                          'end_frame': 2,
                          'quality_width': 1920,
                          'quality_height': 1080
                      },
                      workdir_root="workdir")
        expected_ref_workfile_path_re = \
            r"^workdir/[a-zA-Z0-9-]+/" \
            r"ref_test_0_0_refvideo_720x480_2to2_vs_disvideo_720x480_2to2_q_1920x1080"
        expected_dis_workfile_path_re = \
            r"^workdir/[a-zA-Z0-9-]+/" \
            r"dis_test_0_0_refvideo_720x480_2to2_vs_disvideo_720x480_2to2_q_1920x1080"
        self.assertTrue(
            re.match(expected_ref_workfile_path_re, asset.ref_workfile_path))
        self.assertTrue(
            re.match(expected_dis_workfile_path_re, asset.dis_workfile_path))
        self.assertFalse('use_path_as_workpath' in asset.asset_dict)

        asset.use_path_as_workpath = True
        self.assertTrue('use_path_as_workpath' in asset.asset_dict)
        self.assertTrue(asset.asset_dict['use_path_as_workpath'])
        self.assertEquals(asset.ref_workfile_path, 'dir/refvideo.yuv')
        self.assertEquals(asset.dis_workfile_path, 'dir/disvideo.yuv')
Esempio n. 10
0
    def test_run_psnr_fextractor(self):
        print 'test on running PSNR feature extractor...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test", content_id=0, asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={'width':576, 'height':324})

        asset_original = Asset(dataset="test", content_id=0, asset_id=1,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=ref_path,
                      asset_dict={'width':576, 'height':324})

        self.fextractor = PsnrFeatureExtractor(
            [asset, asset_original],
            None, fifo_mode=True,
            result_store=None
        )
        self.fextractor.run()

        results = self.fextractor.results

        self.assertAlmostEqual(results[0]['PSNR_feature_psnr_score'], 30.755063979166664, places=4)
        self.assertAlmostEqual(results[1]['PSNR_feature_psnr_score'], 60.0, places=4)
Esempio n. 11
0
    def test_dis_width_height(self):
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      ref_path="",
                      dis_path="",
                      asset_dict={
                          'dis_width': 1920,
                          'dis_height': 1080,
                      })
        self.assertEquals(asset.dis_width_height, (1920, 1080))

        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      ref_path="",
                      dis_path="",
                      asset_dict={
                          'dis_width': 1920,
                          'dis_height': 1080,
                          'width': 720,
                          'height': 480
                      })
        self.assertEquals(asset.dis_width_height, (1920, 1080))

        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      ref_path="",
                      dis_path="",
                      asset_dict={
                          'width': 720,
                          'height': 480
                      })
        self.assertEquals(asset.dis_width_height, (720, 480))
Esempio n. 12
0
    def test_run_asset_extractor(self):
        print 'test on running asset extractor...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=1,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={
                          'width': 576,
                          'height': 324,
                          'quality_width': 160,
                          'quality_height': 90
                      })

        asset_original = Asset(dataset="test",
                               content_id=0,
                               asset_id=2,
                               workdir_root=config.ROOT + "/workspace/workdir",
                               ref_path=ref_path,
                               dis_path=ref_path,
                               asset_dict={
                                   'width': 576,
                                   'height': 324,
                                   'quality_width': 160,
                                   'quality_height': 90
                               })

        self.fextractor = AssetExtractor([asset, asset_original],
                                         None,
                                         fifo_mode=True)

        self.fextractor.run()

        results = self.fextractor.results

        self.assertEqual(
            str(results[0]['asset']),
            'test_0_1_src01_hrc00_576x324_576x324_vs_src01_hrc01_576x324_576x324_q_160x90'
        )
        self.assertEqual(
            str(results[1]['asset']),
            'test_0_2_src01_hrc00_576x324_576x324_vs_src01_hrc00_576x324_576x324_q_160x90'
        )

        self.fextractor.run(parallelize=True)

        results = self.fextractor.results

        self.assertEqual(
            str(results[0]['asset']),
            'test_0_1_src01_hrc00_576x324_576x324_vs_src01_hrc01_576x324_576x324_q_160x90'
        )
        self.assertEqual(
            str(results[1]['asset']),
            'test_0_2_src01_hrc00_576x324_576x324_vs_src01_hrc00_576x324_576x324_q_160x90'
        )
Esempio n. 13
0
    def test_feature_assembler_selected_atom_feature(self):
        print 'test on feature assembler with selected atom features...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={
                          'width': 576,
                          'height': 324
                      })

        asset_original = Asset(dataset="test",
                               content_id=0,
                               asset_id=1,
                               workdir_root=config.ROOT + "/workspace/workdir",
                               ref_path=ref_path,
                               dis_path=ref_path,
                               asset_dict={
                                   'width': 576,
                                   'height': 324
                               })

        self.fassembler = FeatureAssembler(
            feature_dict={'VMAF_feature': ['vif', 'motion']},
            feature_option_dict=None,
            assets=[asset, asset_original],
            logger=None,
            fifo_mode=True,
            delete_workdir=True,
            result_store=None,
            parallelize=True,
        )

        self.fassembler.run()

        results = self.fassembler.results

        self.assertAlmostEqual(results[0]['VMAF_feature_vif_score'],
                               0.44455808333333313)
        self.assertAlmostEqual(results[0]['VMAF_feature_motion_score'],
                               3.5916076041666667)

        self.assertAlmostEqual(results[1]['VMAF_feature_vif_score'], 1.0)
        self.assertAlmostEqual(results[1]['VMAF_feature_motion_score'],
                               3.5916076041666667)

        with self.assertRaises(KeyError):
            results[0]['VMAF_feature_ansnr_scores']
        with self.assertRaises(KeyError):
            results[0]['VMAF_feature_ansnr_score']
        with self.assertRaises(KeyError):
            results[0]['VMAF_feature_adm_scores']
        with self.assertRaises(KeyError):
            results[0]['VMAF_feature_adm_score']
Esempio n. 14
0
    def test_run_parallel_ms_ssim_fextractor(self):
        print 'test on running MS-SSIM feature extractor in parallel...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test", content_id=0, asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={'width':576, 'height':324})

        asset_original = Asset(dataset="test", content_id=0, asset_id=1,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=ref_path,
                      asset_dict={'width':576, 'height':324})

        self.fextractors, results = run_executors_in_parallel(
            MsSsimFeatureExtractor,
            [asset, asset_original],
            fifo_mode=True,
            delete_workdir=True,
            parallelize=True,
            result_store=None,
        )

        self.assertAlmostEqual(results[0]['MS_SSIM_feature_ms_ssim_score'], 0.9632498125, places=4)
        self.assertAlmostEqual(results[0]['MS_SSIM_feature_ms_ssim_l_scale0_score'], 0.9923925625, places=4)
        self.assertAlmostEqual(results[0]['MS_SSIM_feature_ms_ssim_c_scale0_score'], 0.9611274375, places=4)
        self.assertAlmostEqual(results[0]['MS_SSIM_feature_ms_ssim_s_scale0_score'], 0.897844791667, places=4)
        self.assertAlmostEqual(results[0]['MS_SSIM_feature_ms_ssim_l_scale1_score'], 0.9954706875, places=4)
        self.assertAlmostEqual(results[0]['MS_SSIM_feature_ms_ssim_c_scale1_score'], 0.9857694375, places=4)
        self.assertAlmostEqual(results[0]['MS_SSIM_feature_ms_ssim_s_scale1_score'], 0.941185875, places=4)
        self.assertAlmostEqual(results[0]['MS_SSIM_feature_ms_ssim_l_scale2_score'], 0.997437458333, places=4)
        self.assertAlmostEqual(results[0]['MS_SSIM_feature_ms_ssim_c_scale2_score'], 0.997034020833, places=4)
        self.assertAlmostEqual(results[0]['MS_SSIM_feature_ms_ssim_s_scale2_score'], 0.977992145833, places=4)
        self.assertAlmostEqual(results[0]['MS_SSIM_feature_ms_ssim_l_scale3_score'], 0.998035583333, places=4)
        self.assertAlmostEqual(results[0]['MS_SSIM_feature_ms_ssim_c_scale3_score'], 0.999588104167, places=4)
        self.assertAlmostEqual(results[0]['MS_SSIM_feature_ms_ssim_s_scale3_score'], 0.99387125, places=4)
        self.assertAlmostEqual(results[0]['MS_SSIM_feature_ms_ssim_l_scale4_score'], 0.9995495, places=4)
        self.assertAlmostEqual(results[0]['MS_SSIM_feature_ms_ssim_c_scale4_score'], 0.999907625, places=4)
        self.assertAlmostEqual(results[0]['MS_SSIM_feature_ms_ssim_s_scale4_score'], 0.998222583333, places=4)

        self.assertAlmostEqual(results[1]['MS_SSIM_feature_ms_ssim_score'], 1.0, places=4)
        self.assertAlmostEqual(results[1]['MS_SSIM_feature_ms_ssim_l_scale0_score'], 1., places=4)
        self.assertAlmostEqual(results[1]['MS_SSIM_feature_ms_ssim_c_scale0_score'], 1., places=4)
        self.assertAlmostEqual(results[1]['MS_SSIM_feature_ms_ssim_s_scale0_score'], 1., places=4)
        self.assertAlmostEqual(results[1]['MS_SSIM_feature_ms_ssim_l_scale1_score'], 1., places=4)
        self.assertAlmostEqual(results[1]['MS_SSIM_feature_ms_ssim_c_scale1_score'], 1., places=4)
        self.assertAlmostEqual(results[1]['MS_SSIM_feature_ms_ssim_s_scale1_score'], 1., places=4)
        self.assertAlmostEqual(results[1]['MS_SSIM_feature_ms_ssim_l_scale2_score'], 1., places=4)
        self.assertAlmostEqual(results[1]['MS_SSIM_feature_ms_ssim_c_scale2_score'], 1., places=4)
        self.assertAlmostEqual(results[1]['MS_SSIM_feature_ms_ssim_s_scale2_score'], 1., places=4)
        self.assertAlmostEqual(results[1]['MS_SSIM_feature_ms_ssim_l_scale3_score'], 1., places=4)
        self.assertAlmostEqual(results[1]['MS_SSIM_feature_ms_ssim_c_scale3_score'], 1., places=4)
        self.assertAlmostEqual(results[1]['MS_SSIM_feature_ms_ssim_s_scale3_score'], 1., places=4)
        self.assertAlmostEqual(results[1]['MS_SSIM_feature_ms_ssim_l_scale4_score'], 1., places=4)
        self.assertAlmostEqual(results[1]['MS_SSIM_feature_ms_ssim_c_scale4_score'], 1., places=4)
        self.assertAlmostEqual(results[1]['MS_SSIM_feature_ms_ssim_s_scale4_score'], 1., places=4)
Esempio n. 15
0
    def test_run_vmaf_runner_with_rf_model(self):
        print 'test on running VMAF runner with custom input model...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={
                          'width': 576,
                          'height': 324
                      })

        asset_original = Asset(dataset="test",
                               content_id=0,
                               asset_id=1,
                               workdir_root=config.ROOT + "/workspace/workdir",
                               ref_path=ref_path,
                               dis_path=ref_path,
                               asset_dict={
                                   'width': 576,
                                   'height': 324
                               })

        self.runner = VmafQualityRunner(
            [asset, asset_original],
            None,
            fifo_mode=True,
            delete_workdir=True,
            result_store=self.result_store,
            optional_dict={
                'model_filepath':
                config.ROOT + "/resource/model/nflx_vmaff_rf_v1.pkl",
            })
        self.runner.run()

        results = self.runner.results

        self.assertAlmostEqual(results[0]['VMAF_score'], 73.79861111111113)
        self.assertAlmostEqual(results[0]['VMAF_feature_vif_score'],
                               0.44455808333333313)
        self.assertAlmostEqual(results[0]['VMAF_feature_motion_score'],
                               3.5916076041666667)
        self.assertAlmostEqual(results[0]['VMAF_feature_adm_score'],
                               0.9155242291666666)
        self.assertAlmostEqual(results[0]['VMAF_feature_ansnr_score'],
                               22.533456770833329)

        self.assertAlmostEqual(results[1]['VMAF_score'], 98.22048611111109)
        self.assertAlmostEqual(results[1]['VMAF_feature_vif_score'], 1.0)
        self.assertAlmostEqual(results[1]['VMAF_feature_motion_score'],
                               3.5916076041666667)
        self.assertAlmostEqual(results[1]['VMAF_feature_adm_score'], 1.0)
        self.assertAlmostEqual(results[1]['VMAF_feature_ansnr_score'],
                               30.030914145833322)
Esempio n. 16
0
    def test_run_parallel_dis_y_fextractor(self):
        print 'test on running dis YUV raw video extractor in parallel (disabled)...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=1,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={
                          'width': 576,
                          'height': 324
                      })

        asset_original = Asset(dataset="test",
                               content_id=0,
                               asset_id=2,
                               workdir_root=config.ROOT + "/workspace/workdir",
                               ref_path=ref_path,
                               dis_path=ref_path,
                               asset_dict={
                                   'width': 576,
                                   'height': 324
                               })

        h5py_file = DisYUVRawVideoExtractor.open_h5py_file(self.h5py_filepath)
        optional_dict2 = {'h5py_file': h5py_file}

        self.fextractors, results = run_executors_in_parallel(
            DisYUVRawVideoExtractor,
            [asset, asset_original],
            fifo_mode=True,
            delete_workdir=True,
            parallelize=False,  # Can't run parallel: can't pickle FileID objects
            result_store=None,
            optional_dict={'channels': 'yu'},
            optional_dict2=optional_dict2)

        self.assertAlmostEqual(np.mean(results[0]['dis_y']),
                               61.332006579182384,
                               places=4)
        self.assertAlmostEquals(np.mean(results[1]['dis_y']),
                                59.788567297525148,
                                places=4)
        self.assertAlmostEqual(np.mean(results[0]['dis_u']),
                               115.23227407335962,
                               places=4)
        self.assertAlmostEquals(np.mean(results[1]['dis_u']),
                                114.49701717535437,
                                places=4)

        with self.assertRaises(KeyError):
            np.mean(results[0]['dis_v'])

        DisYUVRawVideoExtractor.close_h5py_file(h5py_file)
Esempio n. 17
0
    def test_feature_assembler_whole_feature(self):
        print 'test on feature assembler with whole feature...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={
                          'width': 576,
                          'height': 324
                      })

        asset_original = Asset(dataset="test",
                               content_id=0,
                               asset_id=1,
                               workdir_root=config.ROOT + "/workspace/workdir",
                               ref_path=ref_path,
                               dis_path=ref_path,
                               asset_dict={
                                   'width': 576,
                                   'height': 324
                               })

        self.fassembler = FeatureAssembler(
            feature_dict={'VMAF_feature': 'all'},
            feature_option_dict=None,
            assets=[asset, asset_original],
            logger=None,
            fifo_mode=True,
            delete_workdir=True,
            result_store=None,
            parallelize=True,
        )

        self.fassembler.run()

        results = self.fassembler.results

        self.assertAlmostEqual(results[0]['VMAF_feature_vif_score'],
                               0.44455808333333313)
        self.assertAlmostEqual(results[0]['VMAF_feature_motion_score'],
                               3.5916076041666667)
        self.assertAlmostEqual(results[0]['VMAF_feature_adm2_score'],
                               0.9254334398006141)
        self.assertAlmostEqual(results[0]['VMAF_feature_ansnr_score'],
                               22.533456770833329)

        self.assertAlmostEqual(results[1]['VMAF_feature_vif_score'], 1.0)
        self.assertAlmostEqual(results[1]['VMAF_feature_motion_score'],
                               3.5916076041666667)
        self.assertAlmostEqual(results[1]['VMAF_feature_adm2_score'], 1.0)
        self.assertAlmostEqual(results[1]['VMAF_feature_ansnr_score'],
                               30.030914145833322)
Esempio n. 18
0
    def test_run_dis_yuv_raw_video_extractor(self):
        print 'test on running dis YUV raw video extractor...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=1,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={
                          'width': 576,
                          'height': 324
                      })

        asset_original = Asset(dataset="test",
                               content_id=0,
                               asset_id=2,
                               workdir_root=config.ROOT + "/workspace/workdir",
                               ref_path=ref_path,
                               dis_path=ref_path,
                               asset_dict={
                                   'width': 576,
                                   'height': 324
                               })

        h5py_file = DisYUVRawVideoExtractor.open_h5py_file(self.h5py_filepath)

        self.fextractor = DisYUVRawVideoExtractor(
            [asset, asset_original],
            None,
            fifo_mode=False,
            optional_dict={'channels': 'yu'},
            optional_dict2={'h5py_file': h5py_file})

        self.fextractor.run()

        results = self.fextractor.results

        self.assertAlmostEqual(np.mean(results[0]['dis_y']),
                               61.332006579182384,
                               places=4)
        self.assertAlmostEquals(np.mean(results[1]['dis_y']),
                                59.788567297525148,
                                places=4)
        self.assertAlmostEqual(np.mean(results[0]['dis_u']),
                               115.23227407335962,
                               places=4)
        self.assertAlmostEquals(np.mean(results[1]['dis_u']),
                                114.49701717535437,
                                places=4)

        with self.assertRaises(KeyError):
            np.mean(results[0]['dis_v'])

        DisYUVRawVideoExtractor.close_h5py_file(h5py_file)
Esempio n. 19
0
    def test_run_vamf_fextractor(self):
        print 'test on running VMAF feature extractor...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test", content_id=0, asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={'width':576, 'height':324})

        asset_original = Asset(dataset="test", content_id=0, asset_id=1,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=ref_path,
                      asset_dict={'width':576, 'height':324})

        self.fextractor = VmafFeatureExtractor(
            [asset, asset_original],
            None, fifo_mode=True,
            result_store=None
        )
        self.fextractor.run()

        results = self.fextractor.results

        self.assertAlmostEqual(results[0]['VMAF_feature_vif_score'], 0.44455808333333313, places=4)
        self.assertAlmostEqual(results[0]['VMAF_feature_motion_score'], 3.5916076041666667, places=4)
        self.assertAlmostEqual(results[0]['VMAF_feature_adm2_score'], 0.9254334398006141, places=4)
        self.assertAlmostEqual(results[0]['VMAF_feature_ansnr_score'], 22.533456770833329, places=4)

        self.assertAlmostEqual(results[0]['VMAF_feature_vif_num_score'], 644527.3311971038, places=4)
        self.assertAlmostEqual(results[0]['VMAF_feature_vif_den_score'], 1449635.3812459996, places=4)
        self.assertAlmostEqual(results[0]['VMAF_feature_adm_num_score'], 6899.815530270836, places=4)
        self.assertAlmostEqual(results[0]['VMAF_feature_adm_den_score'], 7535.801140312499, places=4)
        self.assertAlmostEqual(results[0]['VMAF_feature_anpsnr_score'], 34.15266368750002, places=4)

        self.assertAlmostEqual(results[0]['VMAF_feature_vif_scale0_score'], 0.3655846219305399, places=4)
        self.assertAlmostEqual(results[0]['VMAF_feature_vif_scale1_score'], 0.7722301581694561, places=4)
        self.assertAlmostEqual(results[0]['VMAF_feature_vif_scale2_score'], 0.8681486658208089, places=4)
        self.assertAlmostEqual(results[0]['VMAF_feature_vif_scale3_score'], 0.9207121810522212, places=4)

        self.assertAlmostEqual(results[1]['VMAF_feature_vif_score'], 1.0, places=4)
        self.assertAlmostEqual(results[1]['VMAF_feature_motion_score'], 3.5916076041666667, places=4)
        self.assertAlmostEqual(results[1]['VMAF_feature_adm2_score'], 1.0, places=4)
        self.assertAlmostEqual(results[1]['VMAF_feature_ansnr_score'], 30.030914145833322, places=4)

        self.assertAlmostEqual(results[1]['VMAF_feature_vif_num_score'], 1449635.3522745417, places=4)
        self.assertAlmostEqual(results[1]['VMAF_feature_vif_den_score'], 1449635.3812459996, places=4)
        self.assertAlmostEqual(results[1]['VMAF_feature_adm_num_score'], 7535.801140312499, places=4)
        self.assertAlmostEqual(results[1]['VMAF_feature_adm_den_score'], 7535.801140312499, places=4)
        self.assertAlmostEqual(results[1]['VMAF_feature_anpsnr_score'], 41.65012097916668, places=4)

        self.assertAlmostEqual(results[1]['VMAF_feature_vif_scale0_score'], 1.0000000132944864, places=4)
        self.assertAlmostEqual(results[1]['VMAF_feature_vif_scale1_score'], 0.9999998271651448, places=4)
        self.assertAlmostEqual(results[1]['VMAF_feature_vif_scale2_score'], 0.9999998649680067, places=4)
        self.assertAlmostEqual(results[1]['VMAF_feature_vif_scale3_score'], 0.9999998102499, places=4)
Esempio n. 20
0
    def test_run_vamf_legacy_runner_10le(self):
        print 'test on running VMAF (legacy) runner on 10 bit le...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv422p10le.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv422p10le.yuv"
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={
                          'width': 576,
                          'height': 324,
                          'yuv_type': 'yuv422p10le'
                      })

        asset_original = Asset(dataset="test",
                               content_id=0,
                               asset_id=1,
                               workdir_root=config.ROOT + "/workspace/workdir",
                               ref_path=ref_path,
                               dis_path=ref_path,
                               asset_dict={
                                   'width': 576,
                                   'height': 324,
                                   'yuv_type': 'yuv422p10le'
                               })

        self.runner = VmafLegacyQualityRunner([asset, asset_original],
                                              None,
                                              fifo_mode=False,
                                              delete_workdir=True,
                                              result_store=None)
        self.runner.run()

        results = self.runner.results

        self.assertAlmostEqual(results[0]['VMAF_legacy_score'],
                               60.27316952679754)
        self.assertAlmostEqual(results[0]['VMAF_feature_vif_score'],
                               0.44455808333333313)
        self.assertAlmostEqual(results[0]['VMAF_feature_motion_score'],
                               3.5916076041666667)
        self.assertAlmostEqual(results[0]['VMAF_feature_adm_score'],
                               0.9155242291666666)
        self.assertAlmostEqual(results[0]['VMAF_feature_ansnr_score'],
                               22.533456770833329)

        self.assertAlmostEqual(results[1]['VMAF_legacy_score'],
                               95.65756240092573)
        self.assertAlmostEqual(results[1]['VMAF_feature_vif_score'], 1.0)
        self.assertAlmostEqual(results[1]['VMAF_feature_motion_score'],
                               3.5916076041666667)
        self.assertAlmostEqual(results[1]['VMAF_feature_adm_score'], 1.0)
        self.assertAlmostEqual(results[1]['VMAF_feature_ansnr_score'],
                               30.030914145833322)
Esempio n. 21
0
    def test_start_end_frame(self):
        asset = Asset(
            dataset="test",
            content_id=0,
            asset_id=0,
            ref_path="",
            dis_path="",
            asset_dict={
                'ref_start_frame': 2,
                'ref_end_frame': 2,
                'dis_start_frame': 3,
                'dis_end_frame': 3
            },
        )
        self.assertEquals(asset.ref_start_end_frame, (2, 2))
        self.assertEquals(asset.dis_start_end_frame, (3, 3))

        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      ref_path="",
                      dis_path="",
                      asset_dict={
                          'start_frame': 2,
                          'end_frame': 2
                      })
        self.assertEquals(asset.ref_start_end_frame, (2, 2))
        self.assertEquals(asset.dis_start_end_frame, (2, 2))

        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      ref_path="",
                      dis_path="",
                      asset_dict={
                          'fps': 24,
                          'duration_sec': 2
                      })
        self.assertEquals(asset.ref_start_end_frame, (0, 47))
        self.assertEquals(asset.dis_start_end_frame, (0, 47))

        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      ref_path="",
                      dis_path="",
                      asset_dict={
                          'fps': 24,
                          'start_sec': 2,
                          'end_sec': 3
                      })
        self.assertEquals(asset.ref_start_end_frame, (48, 71))
        self.assertEquals(asset.dis_start_end_frame, (48, 71))
Esempio n. 22
0
    def test_run_strred_fextractor(self):
        print 'test on running STRRED feature extractor...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={
                          'width': 576,
                          'height': 324
                      })

        asset_original = Asset(dataset="test",
                               content_id=0,
                               asset_id=1,
                               workdir_root=config.ROOT + "/workspace/workdir",
                               ref_path=ref_path,
                               dis_path=ref_path,
                               asset_dict={
                                   'width': 576,
                                   'height': 324
                               })

        self.fextractor = StrredFeatureExtractor([asset, asset_original],
                                                 None,
                                                 fifo_mode=True,
                                                 result_store=None)
        self.fextractor.run(parallelize=True)

        results = self.fextractor.results

        self.assertAlmostEqual(results[0]['STRRED_feature_srred_score'],
                               4.8845008541666664,
                               places=4)
        self.assertAlmostEqual(results[0]['STRRED_feature_trred_score'],
                               8.9429378333333336,
                               places=4)
        self.assertAlmostEqual(results[0]['STRRED_feature_strred_score'],
                               44.002554138184131,
                               places=4)
        self.assertAlmostEqual(results[1]['STRRED_feature_srred_score'],
                               0.0,
                               places=4)
        self.assertAlmostEqual(results[1]['STRRED_feature_trred_score'],
                               0.0,
                               places=4)
        self.assertAlmostEqual(results[1]['STRRED_feature_strred_score'],
                               0.0,
                               places=4)
Esempio n. 23
0
    def test_run_parallel_vmaf_legacy_runner(self):
        print 'test on running VMAF (legacy) quality runner in parallel...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={
                          'width': 576,
                          'height': 324
                      })

        asset_original = Asset(dataset="test",
                               content_id=0,
                               asset_id=1,
                               workdir_root=config.ROOT + "/workspace/workdir",
                               ref_path=ref_path,
                               dis_path=ref_path,
                               asset_dict={
                                   'width': 576,
                                   'height': 324
                               })

        self.runners, results = run_executors_in_parallel(
            VmafLegacyQualityRunner, [asset, asset_original],
            fifo_mode=True,
            delete_workdir=True,
            parallelize=True,
            result_store=None)

        self.assertAlmostEqual(results[0]['VMAF_legacy_score'],
                               60.27316952679754)
        self.assertAlmostEqual(results[0]['VMAF_feature_vif_score'],
                               0.44455808333333313)
        self.assertAlmostEqual(results[0]['VMAF_feature_motion_score'],
                               3.5916076041666667)
        self.assertAlmostEqual(results[0]['VMAF_feature_adm_score'],
                               0.9155242291666666)
        self.assertAlmostEqual(results[0]['VMAF_feature_ansnr_score'],
                               22.533456770833329)

        self.assertAlmostEqual(results[1]['VMAF_legacy_score'],
                               95.65756240092573)
        self.assertAlmostEqual(results[1]['VMAF_feature_vif_score'], 1.0)
        self.assertAlmostEqual(results[1]['VMAF_feature_motion_score'],
                               3.5916076041666667)
        self.assertAlmostEqual(results[1]['VMAF_feature_adm_score'], 1.0)
        self.assertAlmostEqual(results[1]['VMAF_feature_ansnr_score'],
                               30.030914145833322)
Esempio n. 24
0
    def test_hash_equal(self):
        asset1 = Asset(dataset="test",
                       content_id=0,
                       asset_id=2,
                       ref_path="dir/refvideo.yuv",
                       dis_path="dir/disvideo.yuv",
                       asset_dict={
                           'width': 720,
                           'height': 480,
                           'quality_width': 1920,
                           'quality_height': 1080
                       })
        asset2 = Asset(dataset="test",
                       content_id=0,
                       asset_id=2,
                       ref_path="dir/refvideo.yuv",
                       dis_path="dir/disvideo.yuv",
                       asset_dict={
                           'width': 720,
                           'height': 480,
                           'quality_width': 1920,
                           'quality_height': 1080
                       })
        asset3 = Asset(dataset="test",
                       content_id=0,
                       asset_id=2,
                       ref_path="my/dir/refvideo.yuv",
                       dis_path="my/dir/disvideo.yuv",
                       asset_dict={
                           'width': 720,
                           'height': 480,
                           'quality_width': 1920,
                           'quality_height': 1080
                       })
        asset4 = Asset(dataset="test",
                       content_id=0,
                       asset_id=2,
                       ref_path="my/dir/refvideo.yuv",
                       dis_path="my/dir/disvideo.avi",
                       asset_dict={
                           'width': 720,
                           'height': 480,
                           'quality_width': 1920,
                           'quality_height': 1080
                       })

        self.assertTrue(asset1 == asset2)
        self.assertTrue(asset2 == asset3)
        self.assertFalse(asset3 == asset4)
        self.assertTrue(hash(asset2) == hash(asset3))
        self.assertFalse(hash(asset1) == hash(asset4))
Esempio n. 25
0
    def test_run_vmafossexec_runner_with_notyuv(self):
        print 'test on running VMAF runner...'
        ref_path = config.ROOT + "/python/test/resource/icpf/frame%08d.icpf"
        dis_path = config.ROOT + "/python/test/resource/icpf/frame%08d.icpf"
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={
                          'yuv_type': 'notyuv',
                          'quality_width': 720,
                          'quality_height': 480,
                      })
        self.runner = VmafossExecQualityRunner([asset],
                                               None,
                                               fifo_mode=True,
                                               delete_workdir=True,
                                               result_store=None)
        self.runner.run()

        results = self.runner.results
        self.assertAlmostEqual(results[0]['VMAFOSSEXEC_score'],
                               98.860796771266365,
                               places=4)
Esempio n. 26
0
    def test_noref_moment_fextractor(self):
        print 'test on running Moment noref feature extractor on Assets...'
        ref_path = config.ROOT + "/resource/yuv/src01_hrc00_576x324.yuv"
        dis_path = config.ROOT + "/resource/yuv/src01_hrc01_576x324.yuv"
        asset = Asset(dataset="test",
                      content_id=0,
                      asset_id=0,
                      workdir_root=config.ROOT + "/workspace/workdir",
                      ref_path=ref_path,
                      dis_path=dis_path,
                      asset_dict={
                          'width': 576,
                          'height': 324
                      })

        asset_original = Asset(dataset="test",
                               content_id=0,
                               asset_id=1,
                               workdir_root=config.ROOT + "/workspace/workdir",
                               ref_path=ref_path,
                               dis_path=ref_path,
                               asset_dict={
                                   'width': 576,
                                   'height': 324
                               })

        self.fextractor = MomentNorefFeatureExtractor([asset, asset_original],
                                                      None,
                                                      fifo_mode=True,
                                                      result_store=None)
        self.fextractor.run()

        results = self.fextractor.results

        self.assertAlmostEqual(results[0]['Moment_noref_feature_1st_score'],
                               61.332006624999984)
        self.assertAlmostEqual(results[0]['Moment_noref_feature_2nd_score'],
                               4798.659574041666)
        self.assertAlmostEqual(results[0]['Moment_noref_feature_var_score'],
                               1036.8371843488285)

        self.assertAlmostEqual(results[1]['Moment_noref_feature_1st_score'],
                               59.788567297525134)
        self.assertAlmostEqual(results[1]['Moment_noref_feature_2nd_score'],
                               4696.668388042271)
        self.assertAlmostEqual(results[1]['Moment_noref_feature_var_score'],
                               1121.519917231207)
Esempio n. 27
0
 def test_to_normalized_dict(self):
     asset = Asset(dataset="test", content_id=0, asset_id=0,
                   ref_path="dir/refvideo.yuv", dis_path="dir/disvideo.yuv",
                   asset_dict={'width':720, 'height':480,
                               'start_frame':2, 'end_frame':2})
     self.assertEquals(
         asset.to_normalized_dict(),
         {'asset_dict': {'end_frame': 2, 'height': 480,
                         'start_frame': 2, 'width': 720},
           'asset_id': 0,
           'content_id': 0,
           'dataset': 'test',
           'dis_path': 'disvideo.yuv',
           'ref_path': 'refvideo.yuv',
           'workdir': ''
          }
     )
Esempio n. 28
0
 def test_executor_id(self):
     asset = Asset(dataset="test",
                   content_id=0,
                   asset_id=1,
                   ref_path="dir/refvideo.yuv",
                   dis_path="dir/disvideo.yuv",
                   asset_dict={})
     runner = VmafLegacyQualityRunner([asset], None)
     self.assertEquals(runner.executor_id, 'VMAF_legacy_V1.0')
Esempio n. 29
0
 def test_executor_id(self):
     asset = Asset(dataset="test",
                   content_id=0,
                   asset_id=1,
                   ref_path="dir/refvideo.yuv",
                   dis_path="dir/disvideo.yuv",
                   asset_dict={})
     fextractor = VmafFeatureExtractor([asset], None)
     self.assertEquals(fextractor.executor_id, "VMAF_feature_V0.2.1")
Esempio n. 30
0
    def test_get_log_file_path(self):

        asset = Asset(dataset="test", content_id=0, asset_id=1,
                      ref_path="dir/refvideo.yuv", dis_path="dir/disvideo.yuv",
                      asset_dict={'width':720, 'height':480,
                                  'start_frame':2, 'end_frame':2},
                      workdir_root="my_workdir_root")

        fextractor = VmafFeatureExtractor([asset], None)
        log_file_path = fextractor._get_log_file_path(asset)
        self.assertTrue(re.match(r"^my_workdir_root/[a-zA-Z0-9-]+/VMAF_feature_V0.2.1_test_0_1_refvideo_720x480_2to2_vs_disvideo_720x480_2to2_q_720x480$", log_file_path))
Esempio n. 31
0
 def test_workdir(self):
     import re
     asset = Asset(dataset="test",
                   content_id=0,
                   asset_id=0,
                   ref_path="",
                   dis_path="",
                   asset_dict={},
                   workdir_root="my_workdir_root")
     workdir = asset.workdir
     self.assertTrue(re.match(r"^my_workdir_root/[a-zA-Z0-9-]+$", workdir))
Esempio n. 32
0
    def test_use_path_as_workpath(self):
        asset = Asset(dataset="test", content_id=0, asset_id=0,
                      ref_path="dir/refvideo.yuv", dis_path="dir/disvideo.yuv",
                      asset_dict={'width':720, 'height':480,
                                  'start_frame':2, 'end_frame':2,
                                  'quality_width':1920, 'quality_height':1080},
                      workdir_root="workdir")
        expected_ref_workfile_path_re = \
            r"^workdir/[a-zA-Z0-9-]+/" \
            r"ref_test_0_0_refvideo_720x480_2to2_vs_disvideo_720x480_2to2_q_1920x1080"
        expected_dis_workfile_path_re = \
            r"^workdir/[a-zA-Z0-9-]+/" \
            r"dis_test_0_0_refvideo_720x480_2to2_vs_disvideo_720x480_2to2_q_1920x1080"
        self.assertTrue(re.match(expected_ref_workfile_path_re, asset.ref_workfile_path))
        self.assertTrue(re.match(expected_dis_workfile_path_re, asset.dis_workfile_path))
        self.assertFalse('use_path_as_workpath' in asset.asset_dict)

        asset.use_path_as_workpath = True
        self.assertTrue('use_path_as_workpath' in asset.asset_dict)
        self.assertTrue(asset.asset_dict['use_path_as_workpath'])
        self.assertEquals(asset.ref_workfile_path, 'dir/refvideo.yuv')
        self.assertEquals(asset.dis_workfile_path, 'dir/disvideo.yuv')
Esempio n. 33
0
    def from_dataframe(cls, df):

        # first, make sure the df conform to the format for a single asset
        cls._assert_asset_dataframe(df)

        asset_repr = df.iloc[0]['asset']
        asset = Asset.from_repr(asset_repr)

        executor_id = df.iloc[0]['executor_id']

        result_dict = {}
        for _, row in df.iterrows():
            result_dict[row['scores_key']] = row['scores']

        return Result(asset, executor_id, result_dict)
Esempio n. 34
0
    def test_str_repr(self):
        asset = Asset(dataset="test", content_id=0, asset_id=0,
                      ref_path="dir/refvideo.yuv", dis_path="dir/disvideo.yuv",
                      asset_dict={'width':720, 'height':480,
                                  'start_frame':2, 'end_frame':2})
        self.assertEquals(
            str(asset),
            "test_0_0_refvideo_720x480_2to2_vs_disvideo_720x480_2to2_q_720x480"
        )
        expected_repr = '{"asset_dict": {"end_frame": 2, "height": 480, "start_frame": 2, "width": 720}, "asset_id": 0, "content_id": 0, "dataset": "test", "dis_path": "disvideo.yuv", "ref_path": "refvideo.yuv", "workdir": ""}'
        self.assertEquals(repr(asset), expected_repr)
        recon_asset = Asset.from_repr(expected_repr)
        self.assertEquals(asset, recon_asset)
        self.assertTrue(asset == recon_asset)
        self.assertFalse(asset != recon_asset)

        self.assertEquals(asset.to_normalized_repr(), expected_repr)

        asset = Asset(dataset="test", content_id=0, asset_id=1,
                      ref_path="dir/refvideo.yuv", dis_path="dir/disvideo.yuv",
                      asset_dict={'width':720, 'height':480,})
        self.assertEquals(
            str(asset),
            "test_0_1_refvideo_720x480_vs_disvideo_720x480_q_720x480"
        )
        expected_repr = '{"asset_dict": {"height": 480, "width": 720}, "asset_id": 1, "content_id": 0, "dataset": "test", "dis_path": "disvideo.yuv", "ref_path": "refvideo.yuv", "workdir": ""}'
        self.assertEquals(repr(asset), expected_repr)
        recon_asset = Asset.from_repr(expected_repr)
        self.assertEquals(asset, recon_asset)

        asset = Asset(dataset="test", content_id=0, asset_id=2,
                      ref_path="dir/refvideo.yuv", dis_path="dir/disvideo.yuv",
                      asset_dict={'width':720, 'height':480,
                                  'quality_width':1920, 'quality_height':1080})
        self.assertEquals(
            str(asset),
            "test_0_2_refvideo_720x480_vs_disvideo_720x480_q_1920x1080"
        )
        expected_repr = '{"asset_dict": {"height": 480, "quality_height": 1080, "quality_width": 1920, "width": 720}, "asset_id": 2, "content_id": 0, "dataset": "test", "dis_path": "disvideo.yuv", "ref_path": "refvideo.yuv", "workdir": ""}'
        self.assertEquals(repr(asset), expected_repr)
        recon_asset = Asset.from_repr(expected_repr)
        self.assertEquals(asset, recon_asset)

        asset = Asset(dataset="test", content_id=0, asset_id=2,
                      ref_path="dir/refvideo.yuv", dis_path="dir/disvideo.yuv",
                      asset_dict={'width':720, 'height':480,
                                  'quality_width':1920, 'quality_height':1080,
                                  'yuv_type':'yuv422p'})
        self.assertEquals(
            str(asset),
            "test_0_2_refvideo_720x480_yuv422p_vs_disvideo_720x480_yuv422p_q_1920x1080"
        )
        expected_repr = '{"asset_dict": {"height": 480, "quality_height": 1080, "quality_width": 1920, "width": 720, "yuv_type": "yuv422p"}, "asset_id": 2, "content_id": 0, "dataset": "test", "dis_path": "disvideo.yuv", "ref_path": "refvideo.yuv", "workdir": ""}'
        self.assertEquals(repr(asset), expected_repr)
        recon_asset = Asset.from_repr(expected_repr)
        self.assertEquals(asset, recon_asset)

        asset = Asset(dataset="test", content_id=0, asset_id=2,
                      ref_path="dir/refvideo.yuv", dis_path="dir/disvideo.yuv",
                      asset_dict={'width':720, 'height':480,
                                  'quality_width':1920, 'quality_height':1080,
                                  'resampling_type':'lanczos'})
        self.assertEquals(
            str(asset),
            "test_0_2_refvideo_720x480_vs_disvideo_720x480_q_1920x1080_lanczos"
        )
        expected_repr = '{"asset_dict": {"height": 480, "quality_height": 1080, "quality_width": 1920, "resampling_type": "lanczos", "width": 720}, "asset_id": 2, "content_id": 0, "dataset": "test", "dis_path": "disvideo.yuv", "ref_path": "refvideo.yuv", "workdir": ""}'
        self.assertEquals(repr(asset), expected_repr)
        recon_asset = Asset.from_repr(expected_repr)
        self.assertEquals(asset, recon_asset)