Esempio n. 1
0
    def __init__(self, extra):
        database.DatasetBase.__init__(self, extra)

        self.name = 'lfw'
        self.target = 'lfw.vae'
        self.data_dir = '../_datasets/lfw'
        self.task = 'train'
        self.output_dir = None
        self.device = '0'

        self.log = params.Log(print_invl=20,
                              save_summaries_invl=20,
                              save_model_invl=1000,
                              test_invl=1000,
                              val_invl=1000,
                              max_iter=999999)
        """ net """
        self.net = params.Net('kin_vae')
        self.net.set_z_dim(100)
        """ train """
        self.train = params.Phase('train')

        self.train.lr = [params.LearningRate(), params.LearningRate()]
        self.train.lr[0].set_fixed(learning_rate=0.000005)
        self.train.lr[1].set_fixed(learning_rate=0.00005)

        self.train.optimizer = [params.Optimizer(), params.Optimizer()]
        self.train.optimizer[0].set_rmsprop()
        self.train.optimizer[1].set_rmsprop()

        self.train.data = params.Data(batchsize=32,
                                      entry_path='train_1.txt',
                                      shuffle=True,
                                      total_num=5400,
                                      loader='load_image',
                                      reader_thread=32)
        self.train.data = self.set_data_attr(self.train.data)
        """ test """
        self.test = params.Phase('test')
        self.test.data = params.Data(batchsize=100,
                                     entry_path='test_1.txt',
                                     shuffle=False,
                                     total_num=600,
                                     loader='load_image',
                                     reader_thread=1)
        self.test.data = self.set_data_attr(self.test.data)
        """ val """
        self.val = params.Phase('val')
        self.val.data = params.Data(batchsize=100,
                                    entry_path='train_1.txt',
                                    shuffle=False,
                                    total_num=5400,
                                    loader='load_image',
                                    reader_thread=1)
        self.val.data = self.set_data_attr(self.val.data)
Esempio n. 2
0
  def __init__(self, extra):
    database.DatasetBase.__init__(self, extra)
    r = self._read_config_file

    """ base """
    self.name = 'mnist'
    self.target = 'cnn.classification'  # 'ml.active.sampler'
    self.data_dir = '../_datasets/mnist'
    self.task = 'train'
    self.output_dir = None
    self.device = '0'

    """ log """
    self.log = params.Log(
        print_invl=20,
        save_summaries_invl=10,
        save_model_invl=500,
        test_invl=500,
        val_invl=500,
        max_iter=999999)

    """ net """
    self.net = params.Net('cifarnet')
    self.net.set_weight_decay(0.0001)
    self.net.set_dropout_keep(0.5)

    """ train """
    self.train = params.Phase('train')
    self.train.lr = [params.LearningRate()]
    self.train.lr[0].set_fixed(learning_rate=0.001)
    self.train.optimizer = [params.Optimizer()]
    self.train.optimizer[0].set_momentum()
    self.train.data = params.Data(
        batchsize=32,
        entry_path="train.txt",
        shuffle=True,
        total_num=55000,
        loader='load_image')
    self.train.data = self.set_data_attr(self.train.data)

    """ test """
    self.test = params.Phase('test')
    self.test.data = params.Data(
        batchsize=50,
        entry_path="test.txt",
        shuffle=False,
        total_num=10000,
        loader='load_image',
        reader_thread=1)
    self.test.data = self.set_data_attr(self.test.data)
Esempio n. 3
0
  def __init__(self, extra):
    database.DatasetBase.__init__(self, extra)

    self.name = 'mnist'
    self.target = 'gan.acgan'
    self.data_dir = '../_datasets/mnist'
    self.task = 'train'
    self.output_dir = None
    self.device = '0'

    self.log = params.Log(
        print_invl=20,
        save_summaries_invl=10,
        save_model_invl=500,
        test_invl=500,
        val_invl=500,
        max_iter=999999)

    """ net """
    self.net = params.Net('cvae')
    self.net.set_z_dim(100)

    """ train """
    self.train = params.Phase('train')

    self.train.lr = [params.LearningRate(), params.LearningRate()]
    self.train.lr[0].set_fixed(learning_rate=0.001)
    self.train.lr[1].set_fixed(learning_rate=0.001)

    self.train.optimizer = [params.Optimizer(), params.Optimizer()]
    self.train.optimizer[0].set_adam(beta1=0.5)
    self.train.optimizer[1].set_adam(beta1=0.5)

    self.train.data = params.Data(
        batchsize=32,
        entry_path="train.txt",
        shuffle=True,
        total_num=55000,
        loader='load_image')
    self.train.data = self.set_data_attr(self.train.data)

    """ test """
    self.test = params.Phase('test')
    self.test.data = params.Data(batchsize=100)
    self.test.data.set_label(num_classes=10)
Esempio n. 4
0
 def __init__(self, extra):
     database.DatasetBase.__init__(self, extra)
     r = self._read_config_file
     """ base """
     self.name = 'avec2014.audio'
     self.target = 'avec.audio.cnn'
     self.data_dir = '../_datasets/AVEC2014_Audio'
     self.task = 'train'
     self.output_dir = None
     self.device = '0'
     """ log """
     self.log = params.Log(print_invl=1,
                           save_summaries_invl=10,
                           save_model_invl=500,
                           test_invl=500,
                           val_invl=500,
                           max_iter=999999)
     """ net """
     self.net = params.Net('audionet')
     self.net.set_weight_decay(0.0001)
     # self.net.set_dropout_keep(0.5)
     """ train """
     self.train = params.Phase('train')
     self.train.lr = [params.LearningRate()]
     self.train.lr[0].set_fixed(learning_rate=0.001)
     self.train.optimizer = [params.Optimizer()]
     self.train.optimizer[0].set_adam()
     self.train.data = params.Data(batchsize=32,
                                   entry_path="pp_trn_succ64.txt",
                                   shuffle=True,
                                   total_num=15292,
                                   loader='load_audio',
                                   reader_thread=32)
     self.train.data = self.set_data_attr(self.train.data)
     """ test """
     self.test = params.Phase('test')
     self.test.data = params.Data(batchsize=50,
                                  entry_path="pp_tst_succ64.txt",
                                  shuffle=False,
                                  total_num=25465,
                                  loader='load_audio',
                                  reader_thread=1)
     self.test.data = self.set_data_attr(self.test.data)
Esempio n. 5
0
  def __init__(self, extra):
    database.DatasetBase.__init__(self, extra)
    r = self._read_config_file

    """ base """
    self.name = r('kinface2.vae', 'name')
    self.target = r('kinvae.bidirect11', 'target')
    self.data_dir = r('../_datasets/kinface2', 'data_dir')
    self.task = r('train', 'task')
    self.output_dir = r(None, 'output_dir')
    self.device = '0'

    self.log = params.Log(
        print_invl=20,
        save_summaries_invl=20,
        save_model_invl=500,
        test_invl=500,
        val_invl=500,
        max_iter=15000)

    """ Net """
    self.net = params.Net('kin_vae')
    self.net.set_z_dim(100)

    """ train """
    self.train = params.Phase('train')

    self.train.lr = [params.LearningRate(), params.LearningRate()]
    self.train.lr[0].set_fixed(learning_rate=r(0.000005, 'train.lr0'))
    self.train.lr[1].set_fixed(learning_rate=r(0.00005, 'train.lr1'))

    self.train.optimizer = [params.Optimizer(), params.Optimizer()]
    self.train.optimizer[0].set_rmsprop()
    self.train.optimizer[1].set_rmsprop()

    self.train.data = params.Data(
        batchsize=r(32, 'train.batchsize'),
        entry_path=r('train_1.txt', 'train.entry_path'),
        shuffle=True,
        total_num=r(1600, 'train.total_num'),
        loader='load_image',
        reader_thread=32)
    self.train.data = self.set_data_attr(self.train.data)

    """ test """
    self.test = params.Phase('test')
    self.test.data = params.Data(
        batchsize=r(100, 'test.batchsize'),
        entry_path=r('test_1.txt', 'test.entry_path'),
        shuffle=False,
        total_num=r(400, 'test.total_num'),
        loader='load_image',
        reader_thread=1)
    self.test.data = self.set_data_attr(self.test.data)

    """ val """
    self.val = params.Phase('val')
    self.val.data = params.Data(
        batchsize=r(100, 'val.batchsize'),
        total_num=r(1600, 'val.total_num'),
        shuffle=False,
        entry_path=r('train_1.txt', 'val.entry_path'),
        loader='load_image',
        reader_thread=1)
    self.val.data = self.set_data_attr(self.val.data)