Esempio n. 1
0
import argparse
import multiprocessing as mp
import random

import numpy as np
import ray

from core.network import ChessNetwork
from core.environment import ChessEnvironment
from core.agent import ChessAgent
from core.mcts import MCTS
from core.dzlogging import Logger
from core.utils import dotdict

logger = Logger.get_logger('evaluation')

ray.init()


@ray.remote
class Runner(object):
    def __init__(self, net_name, iteration, ckpt=None, cur_white=True):
        self.net_name = net_name
        self.iteration = iteration
        self.ckpt = ckpt
        self.game_name = f'Game {self.iteration + 1}'
        self.cur_white = cur_white

    def run_evaluation(self):
        current_network = ChessNetwork(self.net_name)
        try:
Esempio n. 2
0
import sys
import os
import unittest

sys.path.append(os.path.join(os.path.pardir, os.path.dirname(__file__)))

from training.generators import ExampleGenerator
from core.dzlogging import Logger

logger = Logger.get_logger('unit-test')


class ExampleGeneratorUnitTest(unittest.TestCase):
    def setUp(self):
        self.gen = ExampleGenerator('testgen', 'KingBaseLite2019-C60-C99.pgn')
        self.batch_size = 64

    def test_get_gen(self):
        for i, exs in enumerate(self.gen.get(batch_size=self.batch_size)):
            logger.info(
                f'Batch {i} delivered, shapes: {exs[0].shape}, {exs[1][0].shape}, {exs[1][1].shape}'
            )
            if i == self.batch_size:
                break


if __name__ == '__main__':
    unittest.main()
Esempio n. 3
0
import io
import os

import chess.pgn as pgn
import numpy as np

from engine import Stockfish
from core.environment import ChessEnvironment
from core.utils import labels
from core.dzlogging import Logger

logger = Logger.get_logger('ExampleGenerator')

GENERATORS = {
    'lichess': 'lichess_db_standard_rated_2013-07.pgn',
    'kingbase': 'KingBaseLite2019-C60-C99.pgn'
}


class ExampleGenerator(object):
    '''
    A wrapper class providing support for mini-batch training
    of the neural network. This class handles the batch preprocessing
    steps - namely reading the PGN files for supervised learning and
    generating training examples from the games.
    '''
    def __init__(self, tag):
        self.tag = tag
        self.floc = GENERATORS[self.tag]
        Stockfish.ENGINE.start()
Esempio n. 4
0
import argparse
import multiprocessing as mp
import os

from random import shuffle

import numpy as np
import ray

from core.network import ChessNetwork 
from core.environment import ChessEnvironment
from core.agent import ChessAgent
from core.mcts import MCTS
from core.dzlogging import Logger

logger = Logger.get_logger('selfplay')

ray.init()

@ray.remote
class Runner(object):
    '''
    A `ray` actor responsible for executing a single session of self-play.
    '''
    def __init__(self, net_name, iteration, version='current'):
        '''
        Params
        ------
            net_name (str): the name of the network to use
            iteration (int): the game number in this self-play session
            
Esempio n. 5
0
import argparse
import os
import sys

sys.path.append(os.path.join(os.path.pardir, os.path.dirname(__file__)))

from generators import ExampleGenerator
from core.neuralnets.kerasnet import KerasNetwork
from core.dzlogging import Logger

logger = Logger.get_logger('supervised-learning')


def train(net_name, generator_tag, version='current', ckpt=None):

    net = KerasNetwork(net_name)
    generator = ExampleGenerator(generator_tag)

    if version not in ('current', 'nextgen'):
        logger.fatal(f'Invalid version type: {version}. '
                     'Must be "nextgen" or "current"')
        raise ValueError('Invalid version type')

    try:
        net.load(version, ckpt)
    except RuntimeError as e:
        logger.warn('There was an error loading the model... '
                    'You are training a fresh model!')

    net.train_generator(generator)
Esempio n. 6
0
from keras.engine import *
from keras.layers import *
from keras.models import Model, load_model
from keras.optimizers import SGD

import numpy as np
import tensorflow as tf

from tqdm import tqdm

from .neuralnet import NeuralNetwork, Config
from core.utils import labels, dotdict, tfsession
from core.dzlogging import Logger

logger = Logger.get_logger('KerasNet')

class KerasNetwork(NeuralNetwork):
    '''
    A Keras implementation of the neural network architecture.

    Architectural decisions follow very closely the approach outlined in the paper, with minor deviations.
    Once a stable architecutre is found it will be described in a markdown file in this directory.
    '''
    def __init__(self, name='delta_zero', config=Config.default_config()):
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9, allow_growth=True)
        config_proto = tf.ConfigProto(gpu_options=gpu_options)
        
        self.graph = tf.Graph()
        self.session = tf.Session(graph=self.graph, config=config_proto)
Esempio n. 7
0
import asyncio
import os
import platform

import chess.engine as engine
import numpy as np

from core.dzlogging import Logger

logger = Logger.get_logger('Stockfish')


class Stockfish(object):
    '''Utility class for performing board evaluations.'''
    class _Stockfish(object):
        '''Singleton object'''
        def __init__(self):
            self.t = None
            self.e = None
            asyncio.set_event_loop_policy(engine.EventLoopPolicy())
            self.loop = asyncio.new_event_loop()
            asyncio.set_event_loop(self.loop)

        def start(self):
            async def establish():
                current_os = platform.system()
                ep = os.path.join(
                    os.path.pardir, 'data',
                    f'stockfish-10-{"win" if current_os == "Windows" else "linux"}',
                    f'{current_os}',
                    f'stockfish_10_x64{".exe" if current_os == "Windows" else ""}'
Esempio n. 8
0
import sys
import os
import unittest

sys.path.append(os.path.join(os.path.pardir, os.path.dirname(__file__)))
from core.oomcts import MCTS
from core.neuralnets.kerasnet import KerasNetwork
from core.environment import ChessEnvironment
from core.dzlogging import Logger

logger = Logger.get_logger('mcts-unittest')


class MCTSUnitTest(unittest.TestCase):
    def setUp(self):
        self.env = ChessEnvironment()
        self.net = KerasNetwork()
        self.mcts = MCTS(self.net)

    def test_gameplay(self):
        while not self.env.is_game_over:
            pi = self.mcts.pi(self.env)
            action = pi['a']
            self.env.push_action(action)
            self.mcts.update(action)
            print(self.env)


if __name__ == '__main__':
    unittest.main()
Esempio n. 9
0
from abc import ABCMeta, abstractmethod
import pickle

from core.dzlogging import Logger

config_logger = Logger.get_logger('Config')

class NeuralNetwork(object, metaclass=ABCMeta):
    '''Abstract base class for neural networks in the context of DeltaZero.
    
    This provides a common interface for all potential neural network implementations,
    independent of framework choice.
    '''
    def __init__(self, name, config):
        '''Constructs a neural network.
        
        Params
        ------
            name (str): The name of the network. Used for IO operations.
            config (Config): The network configuration, containing hyperparameters 
                             and metadata.
        '''
        self.name = name
        self.config = config
        self.model = self.build()
        
    @abstractmethod
    def build(self):
        '''
        Builds the network model.
        '''